1,514 research outputs found
The Fermi blazars' divide based on the diagnostic of the SEDs peak frequencies
We have studied the quasi-simultaneous Spectral Energy Distributions (SED) of
48 LBAS blazars, detected within the three months of the LAT Bright AGN Sample
(LBAS) data taking period, combining Fermi and Swift data with radio
NIR-Optical and hard-X/gamma-ray data. Using these quasi-simultaneous SEDs,
sampling both the low and the high energy peak of the blazars broad band
emission, we were able to apply a diagnostic tool based on the estimate of the
peak frequencies of the synchrotron (S) and Inverse Compton (IC) components.
Our analysis shows a Fermi blazars' divide based on the peak frequencies of the
SED. The robust result is that the Synchrotron Self Compton (SSC) region
divides in two the plane were we plot the peak frequency of the synchrotron SED
vs the typical Lorentz factor of the electrons most contributing to the
synchrotron emission and to the inverse Compton process. Objects within or
below this region, radiating likely via the SSC process, are
high-frequency-peaked BL Lac object (HBL), or low/intermediate-frequency peaked
BL Lac object (LBL/IBL). All of the IBLs/LBLs within or below the SSC region
are not Compton dominated. The objects lying above the SSC region, radiating
likely via the External radiation Compton (ERC) process, are Flat Spectrum
Radio Quasars and IBLs/LBLs. All of the IBLs/LBLs in the ERC region show a
significant Compton dominance.Comment: Contribution to the Workshop SciNeGHe 2009/Gamma-ray Physics in the
LHC era (Assisi - Italy, Oct. 7-9 2009
Hadronic interactions of primary cosmic rays with the FLUKA code
The measured fluxes of secondary particles produced by the interactions of
cosmic rays with the astronomical environment represent a powerful tool to
infer some properties of primary cosmic rays. In this work we investigate the
production of secondary particles in inelastic hadronic interactions between
several cosmic rays species of projectiles and different target nuclei of the
interstellar medium. The yields of secondary particles have been calculated
with the FLUKA simulation package, that provides with very good accuracy the
energy distributions of secondary products in a large energy range. An
application to the propagation and production of secondaries in the Galaxy is
presented.Comment: 8 pages, 4 figures; Contribution to the 34th International Cosmic Ray
Conference, July 30 to August 6, The Hague, Netherlands; fixing a typo in the
y-axis label of Fig.
‘Terrorist’ or ‘Mentally Ill’: Motivated Biases Rooted in Partisanship Shape Attributions about Violent Actors
We investigated whether motivated reasoning rooted in partisanship affects the attributions individuals make about violent attackers’ underlying motives and group memberships. Study 1 demonstrated that on the day of the Brexit referendum pro-leavers (vs. pro-remainers) attributed an exculpatory (i.e., mental health) versus condemnatory (i.e., terrorism) motive to the killing of a pro-remain politician. Study 2 demonstrated that pro-immigration (vs. anti-immigration) perceivers in Germany ascribed a mental health (vs. terrorism) motive to a suicide attack by a Syrian refugee, predicting lower endorsement of punitiveness against his group (i.e., refugees) as a whole. Study 3 experimentally manipulated target motives, showing that Americans distanced a politically motivated (vs. mentally ill) violent individual from their in-group and assigned him harsher punishment—patterns most pronounced among high-group identifiers
Anisotropies in the diffuse gamma-ray background measured by Fermi LAT
The small angular scale fluctuations of the (on large scale) isotropic
gamma-ray background (IGRB) carry information about the presence of unresolved
source classes. A guaranteed contribution to the IGRB is expected from the
unresolved gamma-ray AGN while other extragalactic sources, Galactic gamma-ray
source populations and dark matter Galactic and extragalactic structures (and
sub-structures) are candidate contributors. The IGRB was measured with
unprecedented precision by the Large Area Telescope (LAT) on-board of the Fermi
gamma-ray observatory, and these data were used for measuring the IGRB angular
power spectrum (APS). Detailed Monte Carlo simulations of Fermi-LAT all-sky
observations were performed to provide a reference against which to compare the
results obtained for the real data set. The Monte Carlo simulations are also a
method for performing those detailed studies of the APS contributions of single
source populations, which are required in order to identify the actual IGRB
contributors. We present preliminary results of an anisotropy search in the
IGRB. At angular scales <2deg (e.g. above multipole 155), angular power above
the photon noise level is detected, at energies between 1 and 10 GeV in each
energy bin, with statistical significance between 7.2 and 4.1 sigmas. The
energy not dependence of the fluctuation anisotropy is pointing to the presence
of one or more unclustered source populations, while the energy dependence of
the intensity anisotropy is consistent with source populations having average
photon index 2.40\pm0.07.Comment: 6 pages, Proceedings of the RICAP 2011 Conference, submitted to NIM
Anisotropies in the diffuse gamma-ray background measured by the Fermi-LAT
The small angular scale fluctuations of the (on large scale) isotropic gamma-ray background (IGRB) carry information about the presence of unresolved source classes. A guaranteed contribution to the IGRB is expected from the unresolved gamma-ray AGN while other extragalactic sources, Galactic gamma-ray source populations and dark matter Galactic and extragalactic structures (and sub-structures) are candidate contributors.
The IGRB was measured with unprecedented precision by the Large Area Telescope (LAT) on-board of the Fermi gamma-ray observatory, and these data were used for measuring the IGRB angular power spectrum (APS). Detailed Monte Carlo simulations of Fermi-LAT all-sky observations were performed to provide a reference against which to compare the results obtained for the real data set. The Monte Carlo simulations are also a method for performing those detailed studies of the APS contributions of single source populations, which are required in order to identify the actual IGRB contributors.
We present preliminary results of an anisotropy search in the IGRB. At angular scales <2° (e.g., above multipole 155), angular power above the photon noise level is detected, at energies between 1 and 10 GeV in each energy bin, with statistical significance between 7.2 and 4.1σ. The obtained energy dependences point to the presence of one or more unclustered source populations with the components having an average photon index Γ=2.40±0.07
FLUKA cross sections for cosmic-ray interactions with the DRAGON2 code
Secondary particles produced in spallation reactions of cosmic rays with the interstellar gas provide valuable information that allow us to investigate the injection and transport of charged particles in the Galaxy. A good understanding of the cross sections of production of these particles is crucial to correctly interpret our models, although the existing experimental data is very scarce and uncertain. We have developed a new set of cross sections, both inelastic and inclusive, computed with the FLUKA Monte Carlo nuclear code and tested its compatibility with CR data. Inelastic and inclusive cross sections have been compared to the most up-to-date data and parameterisations finding a general good agreement. Then, these cross sections have been implemented in the DRAGON2 code to characterize the spectra of CR nuclei up to Z = 26 and the secondary-to-primary ratios of B, Be and Li. Interestingly, we find that the FLUKA cross sections allow us to predict an energy-dependence of the B, Be and Li flux ratios which is compatible with AMS-02 data and to reproduce simultaneously these flux ratios with a scaling lower than 20%. Finally, we implement the cross sections of production of gamma rays, calculated with FLUKA, in the Gammasky code and compute diffuse gamma-ray sky maps and the local HI emissivity spectrum, finding a very good agreement with Fermi Large Area Telescope data
FLUKA cross sections for cosmic-ray interactions with the DRAGON2 code
Secondary particles produced in spallation reactions of cosmic rays with the interstellar gas provide valuable information that allow us to investigate the injection and transport of charged particles in the Galaxy. A good understanding of the cross sections of production of these particles is crucial to correctly interpret our models, although the existing experimental data is very scarce and uncertain. We have developed a new set of cross sections, both inelastic and inclusive, computed with the FLUKA Monte Carlo nuclear code and tested its compatibility with CR data. Inelastic and inclusive cross sections have been compared to the most up-to-date data and parameterisations finding a general good agreement. Then, these cross sections have been implemented in the DRAGON2 code to characterize the spectra of CR nuclei up to Z = 26 and the secondary-to-primary ratios of B, Be and Li. Interestingly, we find that the FLUKA cross sections allow us to predict an energy-dependence of the B, Be and Li flux ratios which is compatible with AMS-02 data and to reproduce simultaneously these flux ratios with a scaling lower than 20%. Finally, we implement the cross sections of production of gamma rays, calculated with FLUKA, in the Gammasky code and compute diffuse gamma-ray sky maps and the local HI emissivity spectrum, finding a very good agreement with Fermi Large Area Telescope data
- …