2,468 research outputs found

    Impurity scattering in highly anisotropic superconductors and interband sign reversal of the order parameter

    Full text link
    We discuss various mechanisms that can lead to interband sign reversal of the order parameter in a multiband superconductor. In particular, we generalize Abrikosov-Gor'kov solution of the problem of weakly coupled superconductor with magnetic and nonmagnetic impurities on the case of arbitary order parameter anisotropy, including extreme cases as d−d-pairing or interband sign reversal of the order parameter, and show that interband scattering by magnetic impurities can stabilize an interband sign-reversal state. We discuss a possibility of such state in YBa2_2Cu3_3O7_7 in the context of various experiments: Josephson tunneling, neutron scattering, isotope effect measurements.Comment: 8 pages, 1 psfig. To be published in materials of 1996 SPIE conference "Spectroscopic Studies of Superconductors". This is a summary of papers cond-mat/9501117, cond-mat/9501118, cond-mat/9502025, cond-mat/9504076. Besides, we derive a formula for Tc suppression by magnetic and nonmagnetic impurities for arbitrary anisotrop

    Multiplexable Kinetic Inductance Detectors

    Get PDF
    We are starting to investigate a novel multiplexable readout method that can be applied to a large class of superconducting pair-breaking detectors. This readout method is completely different from those currently used with STJ and TES detectors, and in principle could deliver large pixel counts, high sensitivity, and Fano-limited spectral resolution. The readout is based on the fact that the kinetic surface inductance L_s of a superconductor is a function of the density of quasiparticles n, even at temperatures far below T_c. An efficient way to measure changes in the kinetic inductance is to monitor the transmission phase of a resonant circuit. By working at microwave frequencies and using thin films, the kinetic inductance can be a significant part of the total inductance L, and the volume of the inductor can be made quite small, on the order of 1 ”m^3. As is done with other superconducting detectors, trapping could be used to concentrate the quasiparticles into the small volume of the inductor. However, the most intriguing aspect of the concept is that passive frequency multiplexing could be used to read out ~10^3 detectors with a single HEMT amplifier

    Asset Market Liquidity Risk Management: A Generalized Theoretical Modeling Approach for Trading and Fund Management Portfolios

    Get PDF
    Asset market liquidity risk is a significant and perplexing subject and though the term market liquidity risk is used quite chronically in academic literature it lacks an unambiguous definition, let alone understanding of the proposed risk measures. To this end, this paper presents a review of contemporary thoughts and attempts vis-Ă -vis asset market/liquidity risk management. Furthermore, this research focuses on the theoretical aspects of asset liquidity risk and presents critically two reciprocal approaches to measuring market liquidity risk for individual trading securities, and discusses the problems that arise in attempting to quantify asset market liquidity risk at a portfolio level. This paper extends research literature related to the assessment of asset market/liquidity risk by providing a generalized theoretical modeling underpinning that handle, from the same perspective, market and liquidity risks jointly and integrate both risks into a portfolio setting without a commensurate increase of statistical postulations. As such, we argue that market and liquidity risk components are correlated in most cases and can be integrated into one single market/liquidity framework that consists of two interrelated sub-components. The first component is attributed to the impact of adverse price movements, while the second component focuses on the risk of variation in transactions costs due to bid-ask spreads and it attempts to measure the likelihood that it will cost more than expected to liquidate the asset position. We thereafter propose a concrete theoretical foundation and a new modeling framework that attempts to tackle the issue of market/liquidity risk at a portfolio level by combining two asset market/liquidity risk models. The first model is a re-engineered and robust liquidity horizon multiplier that can aid in producing realistic asset market liquidity losses during the unwinding period. The essence of the model is based on the concept of Liquidity-Adjusted Value-at-Risk (L-VaR) framework, and particularly from the perspective of trading portfolios that have both long and short trading positions. Conversely, the second model is related to the transactions cost of liquidation due to bid-ask spreads and includes an improved technique that tackles the issue of bid-ask spread volatility. As such, the model comprises a new approach to contemplating the impact of time-varying volatility of the bid-ask spread and its upshot on the overall asset market/liquidity risk.Economic Capital; Emerging Markets; Financial Engineering; Financial Risk Management; Financial Markets; Liquidity Risk; Portfolio Management; Liquidity Adjusted Value at Risk

    Optical depth for VHE gamma-rays from distant sources from a generic EBL density

    Full text link
    Very-high-energy (VHE; E>100GeV) gamma-rays from distant sources suffer attenuation through pair-production with low energy photons from the diffuse extragalactic photon fields in the ultraviolet (UV) to far-infrared (FIR) (commonly referred to as Extragalactic Background Light; EBL). When modeling the intrinsic spectra of the VHE gamma-ray sources it is crucial to correctly account for the attenuation. Unfortunately, direct measurements of the EBL are difficult and the knowledge about the EBL over certain wavelength ranges is poor. To calculate the EBL attenuation usually predictions from theoretical models are used. Recently, the limits on the EBL from direct and indirect methods have narrowed down the possible EBL range and many of the previous models are in conflict with these limits. We propose a new generic EBL density (not a complete model), which is in compliance with the new EBL limits. EBL evolution with redshift is included in the calculation in a very simple but effective ad-hoc way. Properties of this generic EBL are discussed.Comment: Proceedings of the workshop 'High Energy Phenomena in Relativistic Outflows' (HEPRO), Dublin, 24-28 September 200

    On the distance of PG 1553+11. A lineless BL Lac object active in the TeV band

    Get PDF
    Context: The redshift of PG 1553+11, a bright BL Lac object (V~14), is still unknown. It has been recently observed in the TeV band, a fact that offers an upper limit for the redshift z<0.4. Aims: We intend to provide a lower limit for the distance of the object. Methods: We used a chi^2 procedure to constrain the apparent magnitude of the host galaxy in archived HST images. Supposing that the host galaxy is typical of BL Lac objects (M_{R} -22.8), a lower limit to the distance can be obtained from the limit on the apparent magnitude of the host galaxy. Results: Using the 3 sigma limit on the host galaxy magnitude, the redshift is found to be greater or equal to 0.25. Conlusions: The redshift of PG 1553+11 is probably in the range z=0.3-0.4, making this object the most distant extragalactic source so far detected in the TeV energies. We suggest that other bright BL Lac objects of unknown redshift and similar spectroscopic characteristics may be interesting targets for TeV observations.Comment: Accepted for publication in A&A letters, 4 pages, 5 figure

    Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots

    Full text link
    We describe an electrodynamic mechanism for coherent, quantum mechanical coupling between spacially separated quantum dots on a microchip. The technique is based on capacitive interactions between the electron charge and a superconducting transmission line resonator, and is closely related to atomic cavity quantum electrodynamics. We investigate several potential applications of this technique which have varying degrees of complexity. In particular, we demonstrate that this mechanism allows design and investigation of an on-chip double-dot microscopic maser. Moreover, the interaction may be extended to couple spatially separated electron spin states while only virtually populating fast-decaying superpositions of charge states. This represents an effective, controllable long-range interaction, which may facilitate implementation of quantum information processing with electron spin qubits and potentially allow coupling to other quantum systems such as atomic or superconducting qubits.Comment: 8 pages, 5 figure
    • 

    corecore