1,664 research outputs found

    Identification of arches in 2D granular packings

    Full text link
    We identify arches in a bed of granular disks generated by a molecular dynamic-type simulation. We use the history of the deposition of the particles to identify the supporting contacts of each particle. Then, arches are defined as sets of mutually stable disks. Different packings generated through tapping are analyzed. The possibility of identifying arches from the static structure of a deposited bed, without any information on the history of the deposition, is discussed.Comment: 12 pages, 7 figure

    Unjamming a granular hopper by vibration

    Get PDF
    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics

    Role of vibrations in the jamming and unjamming of grains discharging from a silo

    Get PDF
    We present experimental results of the jamming of non-cohesive particles discharged from a flat bottomed silo subjected to vertical vibration. When the exit orifice is only a few grain diameter wide, the flow can be arrested due to the formation of blocking arches. Hence, an external excitation is needed to resume the flow. The use of a continuous gentle vibration is a usual technique to ease the flow in such situations. Even though jamming is less frequent, it is still an issue in vibrated silos. There are, in principle, two possible mechanisms through which vibrations may facilitate the flow: (i) a decrease in the probability of the formation of blocking arches, and (ii) the breakage of blocking arches once they have been formed. By measuring the time intervals inside an avalanche during which no particles flow through the outlet, we are able to estimate the probability of breaking a blocking arch by vibrations. The result agrees with the prediction of a bivariate probabilistic model in which the formation of blocking arches is equally probable in vibrated and non-vibrated silos. This indicates that the second aforementioned mechanism is the main responsible for improving the flowability in gently vibrated silos

    Bernstein-Szego Polynomials Associated with Root Systems

    Full text link
    We introduce multivariate generalizations of the Bernstein-Szego polynomials, which are associated to the root systems of the complex simple Lie algebras. The multivariate polynomials in question generalize Macdonald's Hall-Littlewood polynomials associated with root systems. For the root system of type A1 (corresponding to the Lie algebra SL (2;C)) the classic Bernstein-Szego polynomials are recovered.Comment: LaTeX, 12 page
    • …
    corecore