127 research outputs found

    Short term X-ray spectral variability of the quasar PDS 456 observed in a low flux state

    Get PDF
    We present an analysis of the 2013 Suzaku campaign on the nearby luminous quasar PDS 456, covering a total duration of ~1 Ms and a net exposure of 455 ks. During these observations, the X-ray flux was suppressed by a factor of >10 in the soft X-ray band when compared to other epochs. We investigated the broadband continuum by constructing a spectral energy distribution, making use of the optical/UV photometry and hard X-ray spectra from the later XMM-Newton/NuSTAR campaign in 2014. The high energy part of this low flux state cannot be accounted for by self-consistent accretion disc and corona models without attenuation by absorbing gas, which partially covers a substantial fraction of the line of sight towards the X-ray source. Two absorption layers are required, of column density log(NH,low/cm2)=22.3±0.1\log (N_{\rm{H,low}}/{\rm cm^{-2}})=22.3\pm0.1 and log(NH,high/cm2)=23.2±0.1\log (N_{\rm{H,high}}/{\rm cm^{-2}})=23.2\pm0.1, with average covering factors of ~80% (with typical 5% variations) and 60% (±\pm10-15%), respectively. In these observations PDS 456 displays significant short term X-ray spectral variability, on timescales of ~100 ks, which can be accounted for by variable covering of the absorbing gas. The partial covering absorber prefers an outflow velocity of vpc=0.250.05+0.01cv_{\rm pc} = 0.25^{+0.01}_{-0.05}c at the >99.9% confidence level over the case where vpc=0v_{\rm pc}=0. This is consistent with the velocity of the highly ionised outflow responsible for the blueshifted iron K absorption profile. We therefore suggest that the partial covering clouds could be the denser, or clumpy part of an inhomogeneous accretion disc wind. Finally we estimate the size-scale of the X-ray source from its variability. The radial extent of the X-ray emitter is found to be of the order ~15-20 RgR_{\rm g}, although the hard X-ray (>2 keV) emission may originate from a more compact or patchy corona of hot electrons, which is ~6-8 RgR_{\rm g} in size.Comment: 38 pages, 13 figures, accepted for publication in MNRA

    Interpreting the long-term variability of the changing-look AGN Mrk 1018

    Full text link
    We present a thorough study of the Changing-Look Active Galactic Nucleus (CL-AGN) Mrk 1018, utilizing an extensive dataset spanning optical, UV, and X-ray spectro-photometric data from 2005 to 2019. We analysed X-ray spectra and broad-band photometry, and performed optical-to-X-ray spectral energy distribution (SED) fitting to comprehend the observed changing-look behaviour. We found that over the 14 years in analysis, significant changes in X-ray spectra occurred, as the hardness ratio increases by a factor of ~2. We validated also the broad-band dimming, with optical, UV, and X-ray luminosities decreasing by factors of >7, >24 and ~9, respectively. These dims are attributed to the declining UV emission. We described the X-ray spectra with a two-Comptonization model, revealing a consistent hot comptonizing medium but a cooling warm component. This cooling, linked to the weakening of the magnetic fields in the accretion disk, explains the UV dimming. We propose that the weakening is caused by the formation of a jet, in turn originated from the change of state of the inner accretion flow. Our optical-to-X-ray SED fitting supports this conclusion, as the normalised accretion rate is super-critical (μ=\mu=0.06>0.02) in the bright state and sub-critical (μ=\mu=0.01<0.02) in the faint state. Instabilities arising at the interface of the state-transition are able to reduce the viscous timescale to the observed ~10 years of Mrk 1018 variability. We explored a possible triggering mechanism for this state transition, involving gaseous clouds pushed onto the AGN sub-pc regions by a recent merging event or by cold chaotic accretion. This scenario, if validated by future simulations, could enhance our understanding of CL-AGN and raises questions about an accretion rate of ~0.02, coupled with minor disturbances in the accretion disk, being the primary factor in the changing-look phenomenon.Comment: 18 pages, 8 figure

    Evidence for a clumpy disc-wind in the star forming Seyfert\,2 galaxy MCG--03--58--007

    Get PDF
    We report the results of a detailed analysis of a deep simultaneous 130ks130\,\rm ks \textit{XMM-Newton & NuSTAR} observation of the nearby (z=0.0315z=0.0315) and bright (Lbol3×1045ergs1L_{\rm bol}\sim3\times10^{45}\,\rm erg\,s^{-1}) starburst-AGN Seyfert\,2 system: MCG--03--58--007. From the broadband fitting we show that most of the obscuration needs to be modeled with a toroidal type reprocessor such as \texttt{MYTorus} \citep{MurphyYaqoob09}. Nonetheless the signature of a powerful disc-wind is still apparent at higher energies and the observed rapid short-term X-ray spectral variability is more likely caused by a variable zone of highly ionized fast wind rather than by a neutral clumpy medium. We also detect X-ray emission from larger scale gas as seen from the presence of several soft narrow emission lines in the RGS, originating from a contribution of a weak star forming activity together with a dominant photoionized component from the AGN.Comment: 16 pages, 9 figures, accepted for publication in MNRA

    Multiplicity of Positive Solutions for an Obstacle Problem in R

    Full text link
    In this paper we establish the existence of two positive solutions for the obstacle problem \displaystyle \int_{\Re}\left[u'(v-u)'+(1+\lambda V(x))u(v-u)\right] \geq \displaystyle \int_{\Re} f(u)(v-u), \forall v\in \Ka where ff is a continuous function verifying some technical conditions and \Ka is the convex set given by \Ka =\left\{v\in H^{1}(\Re); v \geq \varphi \right\}, with φH1()\varphi \in H^{1}(\Re) having nontrivial positive part with compact support in \Re. \vspace{0.2cm} \noindent \emph{2000 Mathematics Subject Classification} : 34B18, 35A15, 46E39. \noindent \emph{Key words}: Obstacle problem, Variational methods, Positive solutions.Comment: To appear in Progress in Nonlinear Differential Equations and their Application

    AGN X-ray spectroscopy with neural networks

    Get PDF
    We explore the possibility of using machine learning to estimate physical parameters directly from active galactic nucleus (AGN) X-ray spectra without needing computationally expensive spectral fitting. Specifically, we consider survey quality data, rather than long pointed observations, to ensure that this approach works in the regime where it is most likely to be applied. We simulate Athena Wide Field Imager spectra of AGN with warm absorbers, and train simple neural networks to estimate the ionization and column density of the absorbers. We find that this approach can give comparable accuracy to spectral fitting, without the risk of outliers caused by the fit sticking in a false minimum, and with an improvement of around three orders of magnitude in speed. We also demonstrate that using principal component analysis to reduce the dimensionality of the data prior to inputting it into the neural net can significantly increase the accuracy of the parameter estimation for negligible computational cost, while also allowing a simpler network architecture to be used

    The properties of the X-ray corona in the distant (z = 3.91) quasar APM 08279+5255

    Get PDF
    We present new joint XMM-Newton and NuSTAR observations of APM08279+5255, a gravitationally-lensed, broad-absorption line quasar (z = 3:91). After showing a fairly stable flux ( f210 ' 45:5 1013 erg s1) from 2000 to 2008, APM08279+5255 was found in a fainter state in the latest X-ray exposures ( f210 ' 2:7 1013 erg s1), which can likely be ascribed to a lower X-ray activity. Moreover, the 2019 data present a prominent FeK emission line and do not show any significant absorption line. This fainter state, coupled to the first hard X-ray sampling of APM08279+5255, allowed us to measure X-ray reflection and the high-energy cuto in this source for the first time. From the analysis of previous XMM-Newton and Chandra observations, X-ray reflection is demonstrated to be a long-lasting feature of this source, but less prominent prior to 2008, possibly due to a stronger primary emission. The estimated high-energy cuto (Ecut = 99+91 35 keV) sets a new redshift record for the farthest ever measured and places APM08279+5255 in the allowed region of the compactness-temperature diagram of X-ray coronae, in agreement with previous results on high-z quasars

    Detection of a possible multiphase ultra-fast outflow in IRAS 13349+2438 with NuSTAR and XMM-Newton

    Get PDF
    We present joint NuSTAR and XMM-Newton observations of the bright, variable quasar IRAS 13349+2438. This combined dataset shows two clear iron absorption lines at 8 and 9 keV, which are most likely associated with two layers of mildly relativistic blueshifted absorption, with velocities of 0.14c and 0.27c. We also find strong evidence for a series of Lyα\alpha absorption lines at intermediate energies in a stacked XMM-Newton EPIC-pn spectrum, at the same blueshift as the lower velocity iron feature. This is consistent with a scenario where an outflowing wind is radially stratified, so faster, higher ionization material is observed closer to the black hole, and cooler, slower material is seen from streamlines at larger radii.Comment: 5 pages, 2 figures, accepted for publication in MNRAS letter
    corecore