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ABSTRACT

We explore the possibility of using machine learning to estimate physical parameters directly from active galactic nucleus (AGN)
X-ray spectra without needing computationally expensive spectral fitting. Specifically, we consider survey quality data, rather
than long pointed observations, to ensure that this approach works in the regime where it is most likely to be applied. We simulate
Athena Wide Field Imager spectra of AGN with warm absorbers, and train simple neural networks to estimate the ionization
and column density of the absorbers. We find that this approach can give comparable accuracy to spectral fitting, without the
risk of outliers caused by the fit sticking in a false minimum, and with an improvement of around three orders of magnitude in
speed. We also demonstrate that using principal component analysis to reduce the dimensionality of the data prior to inputting
it into the neural net can significantly increase the accuracy of the parameter estimation for negligible computational cost, while

also allowing a simpler network architecture to be used.

Key words: accretion, accretion discs —black hole physics — techniques: spectroscopic — galaxies: active.

1 INTRODUCTION

The fundamental aim of X-ray spectroscopy is to estimate physical
parameters. For active galactic nucleus (AGN), this is typically
concentrated on a few key parameters such as black hole spin (e.g.
Risaliti et al. 2013), outflow velocity (e.g. Nardini et al. 2015), or
absorbing column (e.g. Kaastra et al. 2014). The prevailing paradigm
for this parameter estimation is spectral fitting, where a physically
motivated spectral model is constructed and its parameters adjusted
until it provides a good match to the data, usually with a spectral
fitting package like XSPEC (Arnaud 1996). This is arguably the most
intuitive approach to take to the problem, and has been very effective
over the lifetime of X-ray astronomy.

There are some drawbacks with this approach, however. Spectral
fitting like this can rapidly become very computationally expensive,
and is very difficult to automate without heavy supervision, as
models can frequently achieve good fits to the data that do not
correspond to physically meaningful parameter combinations. As
the size of astronomical data sets expands with the next generation
of instrumentation (such as Athena), the computational cost of
running spectral fits on huge numbers of spectra is likely to become
prohibitive. This is likely to be particularly acute for AGN and
other compact objects, as their time variability means that their
parameters can change very rapidly and high-cadence time-resolved
spectroscopy is both possible and highly desirable.

Machine learning offers some alternative tools that can be used
for parameter estimation, which can in principle be applied to the
problem of X-ray spectroscopy. While generally less intuitive, these
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methods can scale very effectively to large data sets, drastically
reducing the computational expense involved. Artificial neural net-
works (ANNSs), designed to mimic how biological neurons function
(McCulloch & Pitts 1943), can learn to predict an arbitrary set of
outputs, such as physical parameters, from an arbitrary set of inputs,
such as spectral count rates. If they can be trained to reliably predict
parameters of interest, then we can potentially use neural networks
to replace spectral fitting (e.g. Firth, Lahav & Somerville 2003;
Vanzella et al. 2004) for large data sets that would otherwise take an
unreasonable amount of time to model. Most relevant here, Ichinohe
et al. (2018) showed that a neural network can in principle be used
to estimate parameters from simple X-ray microcalorimeter spectra
of clusters.

In this work, we explore how a machine learning approach can be
used to estimate parameters from survey quality data, with limited
energy resolution and short exposures. We use a combination of
neural networks and spectral decomposition tools to estimate the
parameters of a warm absorber in Athena Wide Field Imager (WFI,
Athena’s survey instrument; Meidinger et al. 2017) spectra. Warm
absorbers are detectable even in low-signal spectra (e.g. Reynolds
1997), so are likely to be detected in large numbers by Athena,
potentially requiring large-scale automated parameter estimation for
population studies. The spectra in this regime are both noisier and
lower resolution than those considered by previous authors, and we
include the effects of multiple independent spectral components,
making the spectra significantly more complex. We also explore
the impact of pre-processing the data with principal component
analysis (PCA) to reduce the dimensionality, a powerful technique
that can dramatically improve the performance of neural networks.
In Section 2, we simulate a set of spectra for training and testing.
In Section 3, we consider three different methods for recovering the
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Table 1. Parameter distributions used to generate the synthetic spectra. The warm absorber parameter ranges are
roughly based on the range of ionizations and column densities found by Laha et al. (2014).

Model Parameter Distribution Description/unit

TBABS Nu Lognormal, p = 1029, 6 = 0.1 dex Galactic column density (cm™2)

XABS log(&) Uniform, 1-3 Tonization (erg cm s~ ')
Nu Loguniform, 10201022 Warm absorber column density (cm™2)

BLACKBODY kT Normal, u = 0.1, 0 = 0.01 Temperature (keV)

Fos_10 Lognormal, p = 107125 6 = 0.1 dex
Normal, © = 1.8, 0 = 0.1
Fos-10 Lognormal, i = 10712, 0 = 0.1 dex

POWERLAW r

0.5-10 keV flux (erg s~! cm~2)
Photon index
0.5-10 keV flux (erg s~! cm™2)

1073

1074 A

E2F¢ (keVZ counts cm~2 s 1 kev1)

T

0.5 1.0 2.0 5.0
Energy (keV)

Figure 1. Four randomly selected simulated Athena WFI spectra from the
sample, showing the warm absorber, blackbody soft excess, and power-law
continuum.

parameters of the warm absorber in the simulated spectra: automated
spectral fitting, a neural network, and a neural net with PCA pre-
processing. In Section 4, we explore the implications of this work, in
particular how neural networks could be used on a larger scale with
the next generation of X-ray telescopes such as the X-ray Imaging and
Spectroscopy Mission (XRISM) and Athena. Finally, we summarize
our conclusions in Section 5.

2 SIMULATED DATA

In a similar manner to Parker et al. (2022), we set up a physically
motivated model in XSPEC version 12.12.0, and then use the PYXSPEC
PYTHON wrapper (Gordon & Arnaud 2021) to simulate a large
number of spectra. We use a relatively simple model of a power-
law continuum, a phenomenological soft excess, Galactic absorption
(modelled with TBABS; Wilms, Allen & McCray 2000), and a
single layer of warm absorption (modelled with an XSPEC table
model version of the XABS model from SPEX; Kaastra, Mewe &
Nieuwenhuijzen 1996; Steenbrugge et al. 2003; Parker et al. 2019).
The full model, in XSPEC format, is TBABS X XABS X (BLACKBODY
+ POWERLAW).

We draw 11 000 parameter combinations (details of the distribu-
tions used for each parameter are given in Table 1), and simulate
a 10 ks WFI spectrum using the XSPEC fakeit command. The
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first 10000 spectra are to be used as the training set for the neural
network, and the last 1000 as the test and validation set and for
comparison with automated fitting in PYXSPEC. The training set is
used exclusively to train the network, while the test/validation set
is used to evaluate the performance of the network on data that it
has not been trained on. We show four randomly selected spectra in
Fig. 1.

3 RESULTS

We will now explore three different approaches to estimating param-
eters from the simulated spectra. We evaluate the methods by their
ability to recover the ionization parameter and column density of the
warm absorber, assumed to be the primary scientific interest of this
hypothetical study, and the time it takes for them to complete the
parameter estimation. We test all three methods on the same laptop,
running on an eight-core Intel 19-10885H CPU.

3.1 Spectral fitting

First, as a comparison for the machine learning approaches, we use a
conventional spectral fitting approach using PYXSPEC to automate the
fitting. Each spectrum is binned to a minimum signal-to-noise ratio
of 6, and fit from 0.3 to 5 keV with the same model used to simulate
the spectra. For each fit, the parameters are re-set to values in the
middle of each parameter distribution and the model is renormalized.

We then use the standard XSPEC fit algorithm, with no manual
oversight, to estimate the parameters by minimizing the x? statistic."
We note that the accuracy of the fits could likely be improved by
running the error algorithm as well, as XSPEC fits frequently get
stuck in false minima and the more exhaustive parameter search
run by the error estimation algorithm can sometimes escape if the
minimum is shallow. However, this would also drastically increase
the computational expense, which we are aiming to minimize, and
does not help if the false minimum is deep enough.

We show the best-fitting values of ionization and column density,
plotted against the simulated values, in the top panels of Fig. 2. The
parameter estimation is generally extremely good, recovering the
correct value with very small scatter, with the exception of a handful
of points that find false minima, preferentially at high-column
densities and high ionizations. Fitting the 1000 spectra of the testing
set, running in parallel on eight-cores, takes 5 min 30 s. While this is
an entirely reasonable run time, we note that we deliberately set up a
very simple model for testing purposes, and the computational cost
is likely to be much higher in real applications with more complex
models and more spectra.

!'See https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSappendixStatisti
cs.html.
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Figure 2. Parameter recovery for each of the three methods. In each case, for the ionization and column density of the warm absorber, we plot the estimated
parameter value as a function of the simulated value in the top panel, and the ratio of the two as a function of simulated value in the bottom panel (zoomed
to exclude outliers). The red line shows the 1:1 relation. Conventional spectral fitting is the most accurate when outliers are excluded; however, it also has a
tendency to get stuck in false minima. The standard neural network performs well, recovering the parameters well but with a small scatter. Including the PCA
pre-processing step dramatically increases the accuracy of the neural network, for a negligible computational cost.
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Table 2. Performance of the different parameter estimation techniques. For
the spectral fitting, we show the mean squared error for all data points,
and with outliers (defined as points with an individual squared error of
>1) excluded. With outliers excluded spectral fitting is the most accurate,
otherwise the neural net with PCA pre-processing is the most accurate.

Method Run time (s) Mean squared error

Spectral fitting 330 0.12 (2.6 x 1074
Neural network 0.2 42 % 1073
PCA + Neural network 0.4 7.0 x 107*

3.2 Neural net

We next consider directly estimating the parameters from the raw
spectra using a simple neural network. The network consists of
several layers of artificial neurons, starting with an input layer,
followed by some number of hidden layers, and finishing with an
output layer with one neuron per output parameter. Each neuron takes
an input computed from the outputs of all neurons in the previous
layer, and consequently, passes an output to all neurons in the next
layer. The output is calculated by an activation function, applied to
a weighted sum of the inputs plus a bias term. The training process
adjusts the weights and biases of each neuron until the output from
the final layer matches the parameters, attempting to minimize a loss
function.

To build the network, we use the KERAS deep learning API (Chollet
et al. 2015) for PYTHON, running on the TENSORFLOW machine
learning platform (Abadi et al. 2015). We use the Adam optimizer
(Kingma & Ba 2014) with a learning rate of 107, the Rectified
Linear Unit activation function (Nair & Hinton 2010), and the mean
squared error loss function. We implement early stopping (Prechelt
1998) with a patience of 50 to prevent overfitting the training data
(sufficiently complex networks can effectively memorize the training
set, meaning that they can recover the parameters of the training
set perfectly but have no predictive power otherwise), stopping
the training when the loss function of the test/validation set stops
improving.

Before inputting the spectra, we normalize the data to have a mean
of zero and standard deviation of 1 in each energy bin, by subtracting
the mean count rate and dividing by the standard deviation. Similarly,
we normalize the output parameters so that they are roughly similar
in amplitude. In this case, it is sufficient to take the log of the column
density and subtract the minimum value of 10?° cm~2, while leaving
the log(¢) parameter covering the range from 1 to 3. We do not
apply any rebinning to the data, and input the raw count rates in each
channel between 0.5 and 5 keV directly into the network with no
background or response matrix. These 450 channels correspond to the
450 input neurons in the network, and the two output neurons give the
ionization and column density parameter estimates. We experiment
with various network architectures, and find that a network with
two hidden layers of 64 neurons performs well, with little or no
improvement from making the layers larger or adding more layers.

We train the network for 5000 epochs with a batch size of 50;
however, the early stopping typically stops the training after ~1000
steps. Once the network is trained, we apply it to the test sample,
the same 1000 spectra that we fit in XSPEC. The parameter recovery
is shown in the middle panels of Fig. 2. Relative to estimates from
spectral fitting the neural network is slightly less accurate, with more
scatter around the correct answer, but it also does not produce the
outliers that occur with spectral fitting so the overall mean squared
error is lower unless outliers are excluded (see Table 2). The run
time of the neural network is orders of magnitude faster than the
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spectral fitting approach, taking only 0.2 s to compute the parameter
estimates for the 1000 spectra in the test set (this increases to ~0.5 s
when taking into account the time needed to load the model and
spectra from files).

3.3 PCA pre-processing

One reason that a neural net might struggle to accurately recover
the model parameters is the complexity of the input data set, as
each unbinned spectrum has 450 energy bins, or 450 separate model
inputs. In general, the performance of a machine learning model
decreases with the number of inputs (or features) beyond some
critical value. This is known as the ‘peaking phenomenon’ or ‘Hughes
phenomenon’ (Hughes 1968; Trunk 1979). A larger number of input
dimensions requires a more complex network structure to process
them, meaning that the network is more computationally expensive
to train and needs a larger training set to achieve the same accuracy,
and drastically increases the risk of overfitting the training set leading
to poor performance on new data.

In reality, these energy bins are not independent, so the input data
can be dramatically simplified, making the problem of parameter
estimation correspondingly simpler. This is effectively a problem
of dimensionality reduction: a 450 bin spectrum represents a single
point in a 450 dimensional space, and the complete set of 11000
spectra some multidimensional shape. However, this shape could
in principle be described much more efficiently with a different set
of basis vectors as it will have negligible extent in most directions
(analogous to a line or plane in 3D space). PCA is a mathematical
tool for reducing the dimensionality of data sets (Pearson 1901). It
decomposes the data into a set of components (new basis vectors)
and their amplitudes.

Crucially, only the first few components will be needed to describe
the data set fully, with the higher order terms being attributable to
noise. This means that each spectrum can be fully described by a
much smaller number of parameters, simply by excluding these later
components. This has an added benefit of removing much of the
noise from the data set. The number of components corresponding
to real signal in the data can be identified with a log-eigenvalue
(LEV) diagram, plotting the eigenvalues (the variance of the data set
along each of the new basis vectors) in order. The eigenvalues of
components corresponding to noise follow a geometric progression
(regardless of the source of the noise, as this is a property of the
decomposition), which is generally quite distinct from the steeper
decline seen in the first few components corresponding to genuine
signal. While this method is somewhat subjective with noisier data
sets (as it becomes harder to distinguish real components from noise
when they have similar variance), this should not be a problem with
training sets used for ANNs, which should always be large enough
for components to extracted well above the noise level.

Having established which components are genuine signals and
which are due to noise, the noise components can be discarded,
drastically reducing the number of parameters needed to fully
describe the data set. Dimensionality reduction like this is used
extensively in machine learning applications, as it improves the
performance of models with large input data sets, reduces noise in
the data, allows algorithms that only work for low dimension inputs
to be used, and reduces the resources needed to store and analyse the
data.

The shape of the principal components can also be informative, as
they can correspond to the underlying physical components that make
up the spectra (e.g. Parker et al. 2014). However, for the purposes
of this work, it is largely irrelevant whether these components
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Figure 3. LEV diagram, showing the variance of the simulated data set
along each eigenvector. The first 12 correspond to real signal in the data,
while the remaining components can be attributed to noise and excluded
from the analysis.

have any particular physical meaning as we only require that the
dimensionality of the data be reduced.

As in previous work (Parker et al. 2015), we normalize the array of
simulated spectra to fractional deviations from the mean count rate in
each energy bin, before using singular value decomposition (SVD) to
perform the component analysis (using the scipy.linalg.svd
function). The outputs from this function are the set of eigenvectors
(the principal components), the corresponding eignevalues (the
dispersion of the data set along each eigenvector), and the coordinates
of each spectrum in this new basis (analogous to the count rates in
each energy bin).

For our simulated data set, the LEV diagram is shown in Fig. 3. The
first 12 components show significant variance, with the remainder
attributable to noise. We therefore discard all components after
the first 12, meaning that the size of the full data set has been
reduced from 11000 x 450 to 11000 x 12 in the new basis. We
then normalize the new data set to have a mean of zero and standard
deviation of 1 in each column, and input it into the same neural
network architecture. This reduction will be even more effective for
higher resolution spectra, such as those of the Athena X-ray Integral
Field Unit, which will have thousands of energy bins.

We then input the compressed data set into a neural network, as
in Section 3.2. The dimensionality reduction means that the input
layer is only 12 neurons rather than 450, and we find that two
hidden layers of 32 neurons are sufficient for this network, with
wider or deeper networks offering no significant improvement. We
show a comparison of the architecture of this network and the one
from Section 3.2 in Table 3. The number of free parameters of the
network (i.e. the total number of weights and biases of the neurons)
is drastically reduced by the PCA step, with 1538 parameters
in this model compared to 33 154 in the pure neural network
model.

The training performance of the network is significantly better
after the PCA step. We show the training history (i.e. the performance
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Table 3. Architecture of the two neural networks used in this work.

Pure NN PCA + NN

Normalize spectra
PCA (450 channels to 12 eigenvectors)
Normalize amplitudes
Input layer (12 neurons)
Hidden layer (32 neurons)
Hidden layer (32 neurons)
Output layer (2 neurons)

Normalize spectra

Input layer (450 neurons)
Hidden layer (64 neurons)
Hidden layer (64 neurons)
Output layer (2 neurons)

of the neural net as a function of training epoch) of the networks with
and without PCA in Fig. 4. The network with PCA pre-processing
converges faster on a better solution, and with far less noise. The
resulting parameter estimation is shown in the bottom panels of
Fig. 2. The parameter recovery is very good, with no outliers and
much smaller scatter than the pure neural network approach (a factor
of 2 reduction in the standard deviation of the error in log& and a
factor of 3 in log Ny). The additional computational expense is very
small, with the PCA taking 0.2 s to reduce the dimensionality of the
data set.

A secondary benefit of the PCA approach is that it can quickly
identify spectra that are outside the assumptions used to train the
network. Any input spectrum can be trivially transformed into the
new basis, and spectra that are consistent with those in the training
set should be well described purely by the first 12 components. If the
contribution from higher order components increases beyond what
would be expected for noise it implies that the decomposition is
not valid for this new spectrum, and that it is likely not consistent
with the assumptions of the training set (for example, because it has
additional spectral components in it).

4 DISCUSSION

We have explored the use of neural networks for parameter estimation
in X-ray spectra, looking specifically at warm absorbers in Athena
WEFI spectra. Overall, our results are promising, demonstrating that
a neural network can in principle deliver similar accuracy to a
conventional spectral fitting approach in a fraction of the time,
and without the problem of false minima that frequently affects
automated spectral fitting. We have further shown that pre-processing
the spectra with PCA increases the accuracy of the parameter
estimation.

4.1 Comparison with other work

While neural networks have been used in data analysis for a long
time, their use in X-ray astronomy to date has been minimal,
due to the relatively small quantities of data produced by X-
ray instruments. This is guaranteed to change with future instru-
mentation, as the volume of data will be orders of magnitude
larger than it currently is. Ichinohe et al. (2018) demonstrated
that a neural network can be used to estimate physical parameters
directly from an X-ray spectrum, considering a single temperature
thermal plasma in simulated Hitomi spectra. We build on this to
show that a similar approach can be used on lower resolution,
shorter exposure data with additional confusing components, of
the type that is likely to benefit most from a machine learning
approach.

Ichinohe et al. (2018) find that more complex networks are required
to maximize the performance, but achieve a similar level of accuracy

MNRAS 514, 4061-4068 (2022)
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Figure 4. Training history of the neural network with and without PCA pre-processing. The PCA version converges to a lower mean square error solution faster
and with much less noise in both the training and validation set. Note that the mean squared error shown here is not directly comparable to that in Table 2 as
these values are calculated from the normalized parameters used by the networks.

to this work. This difference may be due to the higher number of
energy bins in the microcalorimeter spectra they considered (7200,
compared to 450). The importance of using pre-processing with PCA
or other dimensionality reduction tools to reduce the complexity of
the input data is likely to increase with the number of energy bins,
as reducing the number of inputs should also reduce the complexity
of the network needed to analyse them.

In other branches of astronomy where the data sets are larger,
neural network based approaches are more common. For example,
some other authors have considered the use of PCA pre-processing
and neural networks for classifying stellar spectra (e.g. Storrie-
Lombardi et al. 1994; Singh, Gulati & Gupta 1998) or galaxy spectra
(Folkes, Lahav & Maddox 1996), generally finding that the PCA pre-
processing allows for simpler network architectures and improved
classification accuracy.

Neural networks can also be used for solving the inverse problem
of predicting spectra from parameters, approximating much more
complex models (e.g. Alsing et al. 2020). By training the network
on a representative sample of model spectra, it can predict spectra
for other parameter combinations, meaning that larger and more
accurate (relative to interpolation between grid points) models can
be generated cheaply. We explore this for modelling ultra-fast outflow
spectra in AGN in Matzeu et al. (submitted), finding that spectra can
be generated more accurately than through interpolation and in a tiny
fraction of the time needed to run the full model code.

4.2 Training sets

The accuracy of the neural networks is dependent on how reliable
and how representative the training set is. In this case, the training
set is synthetic spectra covering the same parameter space as the test
set, and both are simulated using the same model, so the training set
meets both criteria. When applying this technique to real data, the
training set will need to either be synthetic spectra calculated using
some assumed model, or a smaller subsample of real spectra with
parameters estimated by spectral fitting. In each case, the reliability
of the final parameter estimates will depend on the reliability of the
spectral models used. It may be worth training multiple networks on
slightly different training sets to mitigate the possibility of model
dependence. For example, networks could be trained on synthetic
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spectra simulated with different models, and on a subset of real
spectra that have been manually analysed.

4.3 Classification

The neural nets we have trained here rely on the assumptions of a
fairly simple continuum and a single layer warm absorber. If these
assumptions are not met, then the parameters returned are likely
to be systematically biased or meaningless, as the parameters from
spectral fitting would be if the incorrect model was used. For example,
if no warm absorber is present then the network will still return
estimates of ionization and column density. It is therefore essential
that the spectra first be classified to ensure that the appropriate
neural networks are applied to them. This also means that the neural
networks used for parameter estimation can be smaller and more
focused on spectra in a particular regime, rather than trying to train a
single huge network to estimate all parameters in all possible spectra.
Given the variety and complexity of X-ray AGN spectra, it is probably
unrealistic to construct a single parameter estimation tool that can
be applied universally, in the same way that it would be unwise to
construct an XSPEC model with every possible physical component
in it simultaneously.

Some simple cuts can be made on hardness ratios, which should
rule out strongly absorbed or jet-dominated sources, for example.
A machine learning approach could also be used, for example by
training neural networks or random forest classifiers to identify
spectra of AGN from particular classes or with particular features,
such as Compton thick AGN, or AGN with warm absorbers, soft
excesses, or broad iron lines. Those spectra could then be passed
to appropriate parameter estimation tools. This stage would be
essentially equivalent to the step in spectral fitting where the user
inspects the spectrum visually and decides which models to apply.
While identifying the most efficient solution to this classification
problem is far outside the scope of this work, we speculate that
a three-layer system with the first classifier to select a general
class of object (type I AGN), then a second to select sources of
interest within that class (those with warm absorbers), and parameter
estimation done by the third layer. We note that such classifica-
tion problems have been studied extensively in other branches of
astronomy (e.g. Eatough et al. 2010; Dieleman, Willett & Dambre
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2015; Kim & Brunner 2016; Aniyan & Thorat 2017; Osborn et al.
2020).

4.4 Error estimation

We have not evaluated the errors on the parameter estimates for any
of the methods explored. In general, it is obviously very important
to know the uncertainty in parameter estimation, along with possible
systematics. For spectral fitting, the conventional procedure is either
to use an error estimation algorithm in the fitting package that
calculates the error by adjusting parameters and refitting until the
fit statistic crosses some threshold, or by using Markov chain Monte
Carlo (MCMC) to map the parameter space. Both of these methods
are very computationally expensive on large scales. Running the
XSPEC error calculations on a single spectrum without simple model
takes around 5 s, which would increase the total time required to
fit the sample by over an order of magnitude, and a robust MCMC
would typically take several minutes per spectrum, even with a small
number of parameters.

The fastest and simplest way to estimate the uncertainties in the
parameter estimates for all three methods is simply to quantify
the scatter in their estimates of parameters in the test set. A more
sophisticated approach for the neural network-based approaches may
be to use a Bayesian neural network, which outputs probability
distributions instead of single values for parameters. This is likely to
perform better with more complex model parameter spaces, where
the uncertainty on any given parameter depends on the values of
multiple other parameters. A Monte Carlo approach can also be
used by adding dropout layers to the model after each layer (Gal &
Ghahramani 2016). These layers will randomly zero a set fraction of
the inputs to the next layer at each step, which is used during training
to prevent overfitting. However, if they are used during the test phase
as well, then the parameter estimates will be slightly different each
time, and the resulting scatter gives an estimate of the uncertainty.
This increases the run time by a factor of the number of iterations,
but this is still likely to be very small compared to the time needed for
conventional error estimation. More problematic for this approach
is the need to have a more complex network to achieve the same
accuracy, to compensate for the information lost by the dropout
layers.

4.5 Advantages and disadvantages of the machine learning
approach

While neural networks can be applied to almost any problem, this
does not mean that they should be. There are many problems in
astronomy where there is no real advantage to using a neural network,
where an answer can be obtained more quickly and more accurately
with existing techniques. A realistic evaluation of whether machine
learning is ultimately useful for a given problem is therefore essential
(and ideally should be undertaken in advance).

The main advantages of neural network are the speed and the
scalability, as we have discussed throughout. The main computational
cost involved in setting up a network is in the training process, which
is essentially fixed regardless of the size of the data set to be evaluated.
A rough threshold for when a neural network will become useful for
spectroscopy is when the time taken to train the network is small
relative to the time needed to model the spectra conventionally. In
this work, this condition is not met, as we only consider a test set of
1000 spectra that take 5 min to fit conventionally, while the network
takes ~10 min to train, but the fitting time scales linearly with the
number of spectra, while the training time is fixed.
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A related issue is that the neural network is only valid for the
specific data on which it was trained, and cannot trivially be applied
to data from a different instrument. For example, if a new instrument
response is released, then the network will need to be re-trained to
account for this. In the analogous situation for conventional fitting,
the spectra would have to be re-fitted using the updated response
files, but these fits could be initialized from the previous best fit
and would likely be faster to converge and no changes to the fitting
algorithm would be needed. In fact, a similar approach could be taken
with a neural network, using transfer learning (e.g. Zhuang et al.
2020) to update the weights of the network without starting from
scratch. This would be much faster, and require less training data.
An additional interesting possibility is that for minor changes in the
model or instrument response it might be possible to update the PCA
decomposition without retraining the network, which would still be
valid if the new PCA components correspond to the old ones. This
would remove the need for computationally expensive retraining,
but would need to be carefully tested to ensure the validity of the
network.

For a small number of spectra, such as a handful of observations
of a single source, the machine learning approach is clearly worse
than conventional spectroscopy performed manually, as it will be
slower overall, less accurate, and far less flexible than an informed
user carefully modelling the spectrum. There may still be some
use to neural networks in this regime, for example obtaining rough
parameter estimates to initialize fits; however, the computational
expense of training a suitable network likely outweighs the time
saved.

In this work, we have considered survey data specifically, where
large numbers of spectra of moderate quality need parameter es-
timation from relatively simple models. In this regime, machine
learning is extremely useful, as it takes a very small fraction of the
time of automated spectral fitting, and avoids the problem of false
minima. This conclusion is likely to hold in any case where very large
numbers of spectra need to be analysed, such as large-scale surveys
or very high time resolution spectroscopy of variable sources. The
more computationally expensive the spectral model is to evaluate, the
greater the speed advantage of the neural network. It is also likely
that neural networks will outperform automated spectral fitting in
complex parameter spaces with false minima, as the parameter space
we considered here was relatively simple and the automated fits
still get stuck occasionally. The PCA pre-processing also conveys
an advantage with higher resolution data, as in general it is more
computationally expensive to evaluate fits on spectra with more
energy bins. PCA sidesteps this issue by reducing the dimensionality
of the data input to the neural network, so the network can remain
small regardless of the number of bins of the original spectra. A
related hidden cost of the neural net training process is the time
needed to evaluate and decide on a network architecture, as there
is no fixed solution for this. PCA helps here as well, as it allows
a smaller network to be used, making it faster to train and more
generally applicable.

5 CONCLUSIONS

We have explored how ANNs can be used to estimate physical
parameters from raw X-ray spectra, without needing to go through
a computationally expensive and potentially unreliable automated
spectral fitting process. We use simulated Athena WFI spectra to train
the networks, and compare their ability to recover the parameters of
a test set of spectra with a conventional spectral fitting approach. Our
main findings are as follows:
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(i) Relatively simple neural networks with two hidden layers and
32—-64 neurons in each layer are able to reliably recover the ionization
and column density of a warm absorber in synthetic spectra. This
approach is orders of magnitude faster than automated spectral fitting,
allowing huge volumes of spectra to be processed in seconds.

(ii) For most spectra, the spectral fitting approach is more accurate;
however, for a minority of spectra, the fit gets stuck in a false
minimum, missing the correct solution by a wide margin. If these
outliers are taken into account, then the neural network approach is
more accurate as well as being faster. If the outliers are excluded,
then the accuracy of the best-performing network is slightly worse
than that of spectral fitting (a factor of 2-3 higher in mean squared
error).

(iii) Including a pre-processing step using PCA to reduce the
dimensionality of the data prior to input into the neural network
means that higher accuracy (a factor of 6 reduction in mean squared
error) can be achieved with a simpler network (32 rather than 64
neurons in the hidden layers, and an input layer of 12 rather than
450 neurons). This has the added benefit of removing noise from the
data set, and adds a mechanism for identifying when new spectra are
outside the assumptions of the training set.

We conclude that this is a promising approach for the large-scale
analysis of X-ray data from the next generation of instrumentation,
such as Athena, allowing rapid analysis without compromising
on accuracy. Use cases include large-scale surveys or studies of
individual objects at high time resolution where the number of spectra
to be evaluated is very large. We anticipate little use for this kind of
approach with individual or small numbers of spectra, as the training
process is more computationally expensive than spectral fitting in
this regime.
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