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A B S T R A C T 

We explore the possibility of using machine learning to estimate physical parameters directly from active galactic nucleus (AGN) 
X-ray spectra without needing computationally e xpensiv e spectral fitting. Specifically, we consider surv e y quality data, rather 
than long pointed observations, to ensure that this approach works in the regime where it is most likely to be applied. We simulate 
Athena Wide Field Imager spectra of AGN with warm absorbers, and train simple neural networks to estimate the ionization 

and column density of the absorbers. We find that this approach can give comparable accuracy to spectral fitting, without the 
risk of outliers caused by the fit sticking in a false minimum, and with an impro v ement of around three orders of magnitude in 

speed. We also demonstrate that using principal component analysis to reduce the dimensionality of the data prior to inputting 

it into the neural net can significantly increase the accuracy of the parameter estimation for negligible computational cost, while 
also allowing a simpler network architecture to be used. 

Key words: accretion, accretion discs – black hole physics – techniques: spectroscopic – galaxies: active. 
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 I N T RO D U C T I O N  

he fundamental aim of X-ray spectroscopy is to estimate physical 
arameters. F or activ e galactic nucleus (AGN), this is typically 
oncentrated on a few key parameters such as black hole spin (e.g.
isaliti et al. 2013 ), outflow velocity (e.g. Nardini et al. 2015 ), or
bsorbing column (e.g. Kaastra et al. 2014 ). The pre v ailing paradigm
or this parameter estimation is spectral fitting, where a physically 
oti v ated spectral model is constructed and its parameters adjusted 

ntil it provides a good match to the data, usually with a spectral
tting package like XSPEC (Arnaud 1996 ). This is arguably the most

ntuitive approach to take to the problem, and has been very ef fecti ve
 v er the lifetime of X-ray astronomy. 
There are some drawbacks with this approach, ho we ver. Spectral 

tting like this can rapidly become very computationally expensive, 
nd is very difficult to automate without heavy supervision, as 
odels can frequently achieve good fits to the data that do not

orrespond to physically meaningful parameter combinations. As 
he size of astronomical data sets expands with the next generation 
f instrumentation (such as Athena ), the computational cost of 
unning spectral fits on huge numbers of spectra is likely to become
rohibitive. This is likely to be particularly acute for AGN and 
ther compact objects, as their time variability means that their 
arameters can change very rapidly and high-cadence time-resolved 
pectroscopy is both possible and highly desirable. 

Machine learning offers some alternative tools that can be used 
or parameter estimation, which can in principle be applied to the 
roblem of X-ray spectroscopy. While generally less intuitive, these 
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ethods can scale very ef fecti vely to large data sets, drastically
educing the computational expense involved. Artificial neural net- 
orks (ANNs), designed to mimic how biological neurons function 

McCulloch & Pitts 1943 ), can learn to predict an arbitrary set of
utputs, such as physical parameters, from an arbitrary set of inputs,
uch as spectral count rates. If they can be trained to reliably predict
arameters of interest, then we can potentially use neural networks 
o replace spectral fitting (e.g. Firth, Lahav & Somerville 2003 ;
anzella et al. 2004 ) for large data sets that would otherwise take an
nreasonable amount of time to model. Most rele v ant here, Ichinohe
t al. ( 2018 ) showed that a neural network can in principle be used
o estimate parameters from simple X-ray microcalorimeter spectra 
f clusters. 
In this work, we explore how a machine learning approach can be

sed to estimate parameters from surv e y quality data, with limited
nergy resolution and short exposures. We use a combination of 
eural networks and spectral decomposition tools to estimate the 
arameters of a warm absorber in Athena Wide Field Imager (WFI,
thena ’s surv e y instrument; Meidinger et al. 2017 ) spectra. Warm
bsorbers are detectable even in low-signal spectra (e.g. Reynolds 
997 ), so are likely to be detected in large numbers by Athena ,
otentially requiring large-scale automated parameter estimation for 
opulation studies. The spectra in this regime are both noisier and
ower resolution than those considered by previous authors, and we 
nclude the effects of multiple independent spectral components, 

aking the spectra significantly more complex. We also explore 
he impact of pre-processing the data with principal component 
nalysis (PCA) to reduce the dimensionality, a powerful technique 
hat can dramatically impro v e the performance of neural networks.
n Section 2 , we simulate a set of spectra for training and testing.
n Section 3 , we consider three different methods for reco v ering the
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Table 1. Parameter distributions used to generate the synthetic spectra. The warm absorber parameter ranges are 
roughly based on the range of ionizations and column densities found by Laha et al. ( 2014 ). 

Model Parameter Distribution Description/unit 

TBABS N H Lognormal, μ = 10 20 , σ = 0.1 dex Galactic column density (cm 

−2 ) 
XABS log( ξ ) Uniform, 1–3 Ionization (erg cm s −1 ) 

N H Loguniform, 10 20 –10 22 Warm absorber column density (cm 

−2 ) 
BLACKBODY kT Normal, μ = 0.1, σ = 0.01 Temperature (keV) 

F 0.5–10 Lognormal, μ = 10 −12.5 , σ = 0.1 dex 0.5–10 keV flux (erg s −1 cm 

−2 ) 
POWERLAW � Normal, μ = 1.8, σ = 0.1 Photon index 

F 0.5–10 Lognormal, μ = 10 −12 , σ = 0.1 dex 0.5–10 keV flux (erg s −1 cm 

−2 ) 

Figure 1. Four randomly selected simulated Athena WFI spectra from the 
sample, showing the warm absorber, blackbody soft excess, and power-law 

continuum. 
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1 See https:// heasarc.gsfc.nasa.gov/ xanadu/xspec/manual/ XSappendixStatisti 
cs.html . 
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arameters of the warm absorber in the simulated spectra: automated
pectral fitting, a neural network, and a neural net with PCA pre-
rocessing. In Section 4 , we explore the implications of this work, in
articular how neural networks could be used on a larger scale with
he next generation of X-ray telescopes such as the X-ray Imaging and
pectroscopy Mission ( XRISM ) and Athena . Finally, we summarize
ur conclusions in Section 5 . 

 SIMULA  TED  DA  TA  

n a similar manner to Parker et al. ( 2022 ), we set up a physically
oti v ated model in XSPEC version 12.12.0, and then use the PYXSPEC

YTHON wrapper (Gordon & Arnaud 2021 ) to simulate a large
umber of spectra. We use a relatively simple model of a power-
aw continuum, a phenomenological soft excess, Galactic absorption
modelled with TBABS ; Wilms, Allen & McCray 2000 ), and a
ingle layer of warm absorption (modelled with an XSPEC table
odel version of the XABS model from SPEX ; Kaastra, Mewe &
ieuwenhuijzen 1996 ; Steenbrugge et al. 2003 ; Parker et al. 2019 ).
he full model, in XSPEC format, is TBABS × XABS × (BLACKBODY

 POWERLAW) . 
We draw 11 000 parameter combinations (details of the distribu-

ions used for each parameter are given in Table 1 ), and simulate
 10 ks WFI spectrum using the XSPEC fakeit command. The
NRAS 514, 4061–4068 (2022) 
rst 10 000 spectra are to be used as the training set for the neural
etwork, and the last 1000 as the test and validation set and for
omparison with automated fitting in PYXSPEC . The training set is
sed e xclusiv ely to train the network, while the test/validation set
s used to e v aluate the performance of the network on data that it
as not been trained on. We show four randomly selected spectra in
ig. 1 . 

 RESULTS  

e will now explore three different approaches to estimating param-
ters from the simulated spectra. We e v aluate the methods by their
bility to reco v er the ionization parameter and column density of the
arm absorber, assumed to be the primary scientific interest of this
ypothetical study, and the time it takes for them to complete the
arameter estimation. We test all three methods on the same laptop,
unning on an eight-core Intel i9-10885H CPU. 

.1 Spectral fitting 

irst, as a comparison for the machine learning approaches, we use a
onventional spectral fitting approach using PYXSPEC to automate the
tting. Each spectrum is binned to a minimum signal-to-noise ratio
f 6, and fit from 0.3 to 5 keV with the same model used to simulate
he spectra. For each fit, the parameters are re-set to values in the

iddle of each parameter distribution and the model is renormalized.
We then use the standard XSPEC fit algorithm, with no manual

 v ersight, to estimate the parameters by minimizing the χ2 statistic. 1 

e note that the accuracy of the fits could likely be impro v ed by
unning the error algorithm as well, as XSPEC fits frequently get
tuck in false minima and the more e xhaustiv e parameter search
un by the error estimation algorithm can sometimes escape if the
inimum is shallo w. Ho we ver, this would also drastically increase

he computational expense, which we are aiming to minimize, and
oes not help if the false minimum is deep enough. 
We show the best-fitting values of ionization and column density,

lotted against the simulated values, in the top panels of Fig. 2 . The
arameter estimation is generally extremely good, recovering the
orrect value with very small scatter, with the exception of a handful
f points that find false minima, preferentially at high-column
ensities and high ionizations. Fitting the 1000 spectra of the testing
et, running in parallel on eight-cores, takes 5 min 30 s. While this is
n entirely reasonable run time, we note that we deliberately set up a
ery simple model for testing purposes, and the computational cost
s likely to be much higher in real applications with more complex
odels and more spectra. 

art/stac1639_f1.eps
https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSappendixStatistics.html
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Figure 2. P arameter reco v ery for each of the three methods. In each case, for the ionization and column density of the warm absorber, we plot the estimated 
parameter value as a function of the simulated value in the top panel, and the ratio of the two as a function of simulated value in the bottom panel (zoomed 
to exclude outliers). The red line shows the 1:1 relation. Conventional spectral fitting is the most accurate when outliers are excluded; ho we ver, it also has a 
tendency to get stuck in false minima. The standard neural network performs well, reco v ering the parameters well but with a small scatter. Including the PCA 

pre-processing step dramatically increases the accuracy of the neural network, for a negligible computational cost. 
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Table 2. Performance of the different parameter estimation techniques. For 
the spectral fitting, we show the mean squared error for all data points, 
and with outliers (defined as points with an individual squared error of 
> 1) excluded. With outliers excluded spectral fitting is the most accurate, 
otherwise the neural net with PCA pre-processing is the most accurate. 

Method Run time (s) Mean squared error 

Spectral fitting 330 0.12 (2.6 × 10 −4 ) 
Neural network 0.2 4.2 × 10 −3 

PCA + Neural network 0.4 7.0 × 10 −4 
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.2 Neural net 

e next consider directly estimating the parameters from the raw
pectra using a simple neural network. The network consists of
everal layers of artificial neurons, starting with an input layer,
ollowed by some number of hidden layers, and finishing with an
utput layer with one neuron per output parameter. Each neuron takes
n input computed from the outputs of all neurons in the previous
ayer, and consequently, passes an output to all neurons in the next
ayer. The output is calculated by an acti v ation function, applied to
 weighted sum of the inputs plus a bias term. The training process
djusts the weights and biases of each neuron until the output from
he final layer matches the parameters, attempting to minimize a loss
unction. 

To build the network, we use the KERAS deep learning API (Chollet
t al. 2015 ) for PYTHON , running on the TENSORFLOW machine
earning platform (Abadi et al. 2015 ). We use the Adam optimizer
Kingma & Ba 2014 ) with a learning rate of 10 −4 , the Rectified
inear Unit acti v ation function (Nair & Hinton 2010 ), and the mean
quared error loss function. We implement early stopping (Prechelt
998 ) with a patience of 50 to prevent overfitting the training data
sufficiently complex networks can ef fecti vely memorize the training
et, meaning that they can reco v er the parameters of the training
et perfectly but have no predictive power otherwise), stopping
he training when the loss function of the test/validation set stops
mproving. 

Before inputting the spectra, we normalize the data to have a mean
f zero and standard deviation of 1 in each energy bin, by subtracting
he mean count rate and dividing by the standard deviation. Similarly,
e normalize the output parameters so that they are roughly similar

n amplitude. In this case, it is sufficient to take the log of the column
ensity and subtract the minimum value of 10 20 cm 

−2 , while leaving
he log( ξ ) parameter co v ering the range from 1 to 3. We do not
pply any rebinning to the data, and input the raw count rates in each
hannel between 0.5 and 5 keV directly into the network with no
ackground or response matrix. These 450 channels correspond to the
50 input neurons in the network, and the two output neurons give the
onization and column density parameter estimates. We experiment
ith various network architectures, and find that a network with

wo hidden layers of 64 neurons performs well, with little or no
mpro v ement from making the layers larger or adding more layers. 

We train the network for 5000 epochs with a batch size of 50;
o we ver, the early stopping typically stops the training after ∼1000
teps. Once the network is trained, we apply it to the test sample,
he same 1000 spectra that we fit in XSPEC . The parameter reco v ery
s shown in the middle panels of Fig. 2 . Relative to estimates from
pectral fitting the neural network is slightly less accurate, with more
catter around the correct answer, but it also does not produce the
utliers that occur with spectral fitting so the o v erall mean squared
rror is lower unless outliers are excluded (see Table 2 ). The run
ime of the neural network is orders of magnitude faster than the
NRAS 514, 4061–4068 (2022) 
pectral fitting approach, taking only 0.2 s to compute the parameter
stimates for the 1000 spectra in the test set (this increases to ∼0.5 s
hen taking into account the time needed to load the model and

pectra from files). 

.3 PCA pr e-pr ocessing 

ne reason that a neural net might struggle to accurately reco v er
he model parameters is the complexity of the input data set, as
ach unbinned spectrum has 450 energy bins, or 450 separate model
nputs. In general, the performance of a machine learning model
ecreases with the number of inputs (or features) beyond some
ritical value. This is known as the ‘peaking phenomenon’ or ‘Hughes
henomenon’ (Hughes 1968 ; Trunk 1979 ). A larger number of input
imensions requires a more complex network structure to process
hem, meaning that the network is more computationally e xpensiv e
o train and needs a larger training set to achieve the same accuracy,
nd drastically increases the risk of o v erfitting the training set leading
o poor performance on new data. 

In reality, these energy bins are not independent, so the input data
an be dramatically simplified, making the problem of parameter
stimation correspondingly simpler. This is ef fecti vely a problem
f dimensionality reduction: a 450 bin spectrum represents a single
oint in a 450 dimensional space, and the complete set of 11 000
pectra some multidimensional shape. Ho we ver, this shape could
n principle be described much more efficiently with a different set
f basis vectors as it will have negligible extent in most directions
analogous to a line or plane in 3D space). PCA is a mathematical
ool for reducing the dimensionality of data sets (Pearson 1901 ). It
ecomposes the data into a set of components (new basis vectors)
nd their amplitudes. 

Crucially, only the first few components will be needed to describe
he data set fully, with the higher order terms being attributable to
oise. This means that each spectrum can be fully described by a
uch smaller number of parameters, simply by excluding these later

omponents. This has an added benefit of removing much of the
oise from the data set. The number of components corresponding
o real signal in the data can be identified with a log-eigenvalue
LEV) diagram, plotting the eigenvalues (the variance of the data set
long each of the new basis vectors) in order. The eigenvalues of
omponents corresponding to noise follow a geometric progression
regardless of the source of the noise, as this is a property of the
ecomposition), which is generally quite distinct from the steeper
ecline seen in the first few components corresponding to genuine
ignal. While this method is somewhat subjective with noisier data
ets (as it becomes harder to distinguish real components from noise
hen the y hav e similar variance), this should not be a problem with

raining sets used for ANNs, which should al w ays be large enough
or components to extracted well above the noise level. 

Having established which components are genuine signals and
hich are due to noise, the noise components can be discarded,
rastically reducing the number of parameters needed to fully
escribe the data set. Dimensionality reduction like this is used
 xtensiv ely in machine learning applications, as it impro v es the
erformance of models with large input data sets, reduces noise in
he data, allows algorithms that only work for low dimension inputs
o be used, and reduces the resources needed to store and analyse the
ata. 
The shape of the principal components can also be informative, as

hey can correspond to the underlying physical components that make
p the spectra (e.g. Parker et al. 2014 ). Ho we ver, for the purposes
f this work, it is largely irrele v ant whether these components
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Figure 3. LEV diagram, showing the variance of the simulated data set 
along each eigenvector. The first 12 correspond to real signal in the data, 
while the remaining components can be attributed to noise and excluded 
from the analysis. 
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Table 3. Architecture of the two neural networks used in this work. 

Pure NN PCA + NN 

Normalize spectra 
PCA (450 channels to 12 eigenvectors) 

Normalize spectra Normalize amplitudes 
Input layer (450 neurons) Input layer (12 neurons) 
Hidden layer (64 neurons) Hidden layer (32 neurons) 
Hidden layer (64 neurons) Hidden layer (32 neurons) 
Output layer (2 neurons) Output layer (2 neurons) 
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av e an y particular physical meaning as we only require that the
imensionality of the data be reduced. 
As in previous w ork (Park er et al. 2015 ), we normalize the array of

imulated spectra to fractional deviations from the mean count rate in 
ach energy bin, before using singular value decomposition (SVD) to 
erform the component analysis (using the scipy.linalg.svd 
unction). The outputs from this function are the set of eigenvectors 
the principal components), the corresponding eigne v alues (the 
ispersion of the data set along each eigenvector), and the coordinates 
f each spectrum in this new basis (analogous to the count rates in
ach energy bin). 

For our simulated data set, the LEV diagram is shown in Fig. 3 . The
rst 12 components show significant variance, with the remainder 
ttributable to noise. We therefore discard all components after 
he first 12, meaning that the size of the full data set has been
educed from 11 000 × 450 to 11 000 × 12 in the new basis. We
hen normalize the new data set to have a mean of zero and standard
eviation of 1 in each column, and input it into the same neural
etwork architecture. This reduction will be even more effective for 
igher resolution spectra, such as those of the Athena X-ray Integral 
ield Unit, which will have thousands of energy bins. 
We then input the compressed data set into a neural network, as

n Section 3.2 . The dimensionality reduction means that the input 
ayer is only 12 neurons rather than 450, and we find that two
idden layers of 32 neurons are sufficient for this network, with 
ider or deeper networks offering no significant impro v ement. We 

how a comparison of the architecture of this network and the one
rom Section 3.2 in Table 3 . The number of free parameters of the
etwork (i.e. the total number of weights and biases of the neurons)
s drastically reduced by the PCA step, with 1538 parameters 
n this model compared to 33 154 in the pure neural network
odel. 
The training performance of the network is significantly better 

fter the PCA step. We show the training history (i.e. the performance
f the neural net as a function of training epoch) of the networks with
nd without PCA in Fig. 4 . The network with PCA pre-processing
onverges faster on a better solution, and with far less noise. The
esulting parameter estimation is shown in the bottom panels of 
ig. 2 . The parameter reco v ery is v ery good, with no outliers and
uch smaller scatter than the pure neural network approach (a factor

f 2 reduction in the standard deviation of the error in log ξ and a
actor of 3 in log N H ). The additional computational expense is very
mall, with the PCA taking 0.2 s to reduce the dimensionality of the
ata set. 
A secondary benefit of the PCA approach is that it can quickly

dentify spectra that are outside the assumptions used to train the
etwork. Any input spectrum can be trivially transformed into the 
ew basis, and spectra that are consistent with those in the training
et should be well described purely by the first 12 components. If the
ontribution from higher order components increases beyond what 
ould be expected for noise it implies that the decomposition is
ot valid for this new spectrum, and that it is likely not consistent
ith the assumptions of the training set (for example, because it has

dditional spectral components in it). 

 DI SCUSSI ON  

e have explored the use of neural networks for parameter estimation
n X-ray spectra, looking specifically at warm absorbers in Athena 

FI spectra. Overall, our results are promising, demonstrating that 
 neural network can in principle deliver similar accuracy to a
onventional spectral fitting approach in a fraction of the time, 
nd without the problem of false minima that frequently affects 
utomated spectral fitting. We have further shown that pre-processing 
he spectra with PCA increases the accuracy of the parameter 
stimation. 

.1 Comparison with other work 

hile neural networks have been used in data analysis for a long
ime, their use in X-ray astronomy to date has been minimal,
ue to the relatively small quantities of data produced by X-
ay instruments. This is guaranteed to change with future instru- 
entation, as the volume of data will be orders of magnitude

arger than it currently is. Ichinohe et al. ( 2018 ) demonstrated
hat a neural network can be used to estimate physical parameters
irectly from an X-ray spectrum, considering a single temperature 
hermal plasma in simulated Hitomi spectra. We build on this to
how that a similar approach can be used on lower resolution,
horter exposure data with additional confusing components, of 
he type that is likely to benefit most from a machine learning
pproach. 

Ichinohe et al. ( 2018 ) find that more complex networks are required
o maximize the performance, but achieve a similar level of accuracy 
MNRAS 514, 4061–4068 (2022) 
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Figure 4. Training history of the neural network with and without PCA pre-processing. The PCA v ersion conv erges to a lower mean square error solution faster 
and with much less noise in both the training and validation set. Note that the mean squared error shown here is not directly comparable to that in Table 2 as 
these values are calculated from the normalized parameters used by the networks. 
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o this work. This difference may be due to the higher number of
nergy bins in the microcalorimeter spectra they considered (7200,
ompared to 450). The importance of using pre-processing with PCA
r other dimensionality reduction tools to reduce the complexity of
he input data is likely to increase with the number of energy bins,
s reducing the number of inputs should also reduce the complexity
f the network needed to analyse them. 
In other branches of astronomy where the data sets are larger,

eural network based approaches are more common. For example,
ome other authors have considered the use of PCA pre-processing
nd neural networks for classifying stellar spectra (e.g. Storrie-
ombardi et al. 1994 ; Singh, Gulati & Gupta 1998 ) or galaxy spectra

Folkes, Lahav & Maddox 1996 ), generally finding that the PCA pre-
rocessing allows for simpler network architectures and impro v ed
lassification accuracy. 

Neural networks can also be used for solving the inverse problem
f predicting spectra from parameters, approximating much more
omplex models (e.g. Alsing et al. 2020 ). By training the network
n a representative sample of model spectra, it can predict spectra
or other parameter combinations, meaning that larger and more
ccurate (relative to interpolation between grid points) models can
e generated cheaply. We explore this for modelling ultra-fast outflow
pectra in AGN in Matzeu et al. (submitted), finding that spectra can
e generated more accurately than through interpolation and in a tiny
raction of the time needed to run the full model code. 

.2 Training sets 

he accuracy of the neural networks is dependent on how reliable
nd ho w representati ve the training set is. In this case, the training
et is synthetic spectra co v ering the same parameter space as the test
et, and both are simulated using the same model, so the training set
eets both criteria. When applying this technique to real data, the

raining set will need to either be synthetic spectra calculated using
ome assumed model, or a smaller subsample of real spectra with
arameters estimated by spectral fitting. In each case, the reliability
f the final parameter estimates will depend on the reliability of the
pectral models used. It may be worth training multiple networks on
lightly different training sets to mitigate the possibility of model
ependence. F or e xample, networks could be trained on synthetic
NRAS 514, 4061–4068 (2022) 
pectra simulated with different models, and on a subset of real
pectra that have been manually analysed. 

.3 Classification 

he neural nets we have trained here rely on the assumptions of a
airly simple continuum and a single layer warm absorber. If these
ssumptions are not met, then the parameters returned are likely
o be systematically biased or meaningless, as the parameters from
pectral fitting would be if the incorrect model was used. For example,
f no warm absorber is present then the network will still return
stimates of ionization and column density. It is therefore essential
hat the spectra first be classified to ensure that the appropriate
eural networks are applied to them. This also means that the neural
etworks used for parameter estimation can be smaller and more
ocused on spectra in a particular regime, rather than trying to train a
ingle huge network to estimate all parameters in all possible spectra.
iven the variety and complexity of X-ray AGN spectra, it is probably
nrealistic to construct a single parameter estimation tool that can
e applied universally, in the same way that it would be unwise to
onstruct an XSPEC model with every possible physical component
n it simultaneously. 

Some simple cuts can be made on hardness ratios, which should
ule out strongly absorbed or jet-dominated sources, for example.
 machine learning approach could also be used, for example by

raining neural networks or random forest classifiers to identify
pectra of AGN from particular classes or with particular features,
uch as Compton thick AGN, or AGN with warm absorbers, soft
xcesses, or broad iron lines. Those spectra could then be passed
o appropriate parameter estimation tools. This stage would be
ssentially equi v alent to the step in spectral fitting where the user
nspects the spectrum visually and decides which models to apply.

hile identifying the most efficient solution to this classification
roblem is far outside the scope of this work, we speculate that
 three-layer system with the first classifier to select a general
lass of object (type I AGN), then a second to select sources of
nterest within that class (those with warm absorbers), and parameter
stimation done by the third layer. We note that such classifica-
ion problems have been studied extensively in other branches of
stronomy (e.g. Eatough et al. 2010 ; Dieleman, Willett & Dambre
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015 ; Kim & Brunner 2016 ; Aniyan & Thorat 2017 ; Osborn et al.
020 ). 

.4 Error estimation 

e have not e v aluated the errors on the parameter estimates for any
f the methods explored. In general, it is ob viously v ery important
o know the uncertainty in parameter estimation, along with possible 
ystematics. For spectral fitting, the conventional procedure is either 
o use an error estimation algorithm in the fitting package that 
alculates the error by adjusting parameters and refitting until the 
t statistic crosses some threshold, or by using Markov chain Monte 
arlo (MCMC) to map the parameter space. Both of these methods 
re very computationally expensive on large scales. Running the 
SPEC error calculations on a single spectrum without simple model 

akes around 5 s, which would increase the total time required to
t the sample by o v er an order of magnitude, and a robust MCMC
ould typically take several minutes per spectrum, even with a small
umber of parameters. 
The fastest and simplest way to estimate the uncertainties in the 

arameter estimates for all three methods is simply to quantify 
he scatter in their estimates of parameters in the test set. A more
ophisticated approach for the neural network-based approaches may 
e to use a Bayesian neural network, which outputs probability 
istributions instead of single values for parameters. This is likely to 
erform better with more complex model parameter spaces, where 
he uncertainty on any given parameter depends on the values of

ultiple other parameters. A Monte Carlo approach can also be 
sed by adding dropout layers to the model after each layer (Gal &
hahramani 2016 ). These layers will randomly zero a set fraction of

he inputs to the next layer at each step, which is used during training
o prevent overfitting. Ho we ver, if they are used during the test phase
s well, then the parameter estimates will be slightly different each 
ime, and the resulting scatter gives an estimate of the uncertainty. 
his increases the run time by a factor of the number of iterations,
ut this is still likely to be very small compared to the time needed for
onventional error estimation. More problematic for this approach 
s the need to have a more complex network to achieve the same
ccuracy, to compensate for the information lost by the dropout 
ayers. 

.5 Advantages and disadvantages of the machine learning 
pproach 

hile neural networks can be applied to almost any problem, this
oes not mean that they should be. There are many problems in
stronomy where there is no real advantage to using a neural network,
here an answer can be obtained more quickly and more accurately 
ith existing techniques. A realistic e v aluation of whether machine 

earning is ultimately useful for a given problem is therefore essential 
and ideally should be undertaken in advance). 

The main advantages of neural network are the speed and the 
calability, as we have discussed throughout. The main computational 
ost involved in setting up a network is in the training process, which
s essentially fixed regardless of the size of the data set to be e v aluated.
 rough threshold for when a neural network will become useful for

pectroscopy is when the time taken to train the network is small
elative to the time needed to model the spectra conventionally. In
his work, this condition is not met, as we only consider a test set of
000 spectra that take 5 min to fit conventionally, while the network
akes ∼10 min to train, but the fitting time scales linearly with the
umber of spectra, while the training time is fixed. 
A related issue is that the neural network is only valid for the
pecific data on which it was trained, and cannot trivially be applied
o data from a different instrument. For example, if a new instrument
esponse is released, then the network will need to be re-trained to
ccount for this. In the analogous situation for conventional fitting, 
he spectra would have to be re-fitted using the updated response
les, but these fits could be initialized from the previous best fit
nd would likely be faster to converge and no changes to the fitting
lgorithm would be needed. In fact, a similar approach could be taken
ith a neural network, using transfer learning (e.g. Zhuang et al.
020 ) to update the weights of the network without starting from
cratch. This would be much faster, and require less training data.
n additional interesting possibility is that for minor changes in the
odel or instrument response it might be possible to update the PCA

ecomposition without retraining the network, which would still be 
alid if the new PCA components correspond to the old ones. This
ould remo v e the need for computationally e xpensiv e retraining,
ut would need to be carefully tested to ensure the validity of the
etwork. 
For a small number of spectra, such as a handful of observations

f a single source, the machine learning approach is clearly worse
han conventional spectroscopy performed manually, as it will be 
lower o v erall, less accurate, and far less fle xible than an informed
ser carefully modelling the spectrum. There may still be some 
se to neural networks in this regime, for example obtaining rough
arameter estimates to initialize fits; ho we ver, the computational 
xpense of training a suitable network likely outweighs the time 
aved. 

In this work, we have considered survey data specifically, where 
arge numbers of spectra of moderate quality need parameter es- 
imation from relatively simple models. In this regime, machine 
earning is extremely useful, as it takes a very small fraction of the
ime of automated spectral fitting, and a v oids the problem of false
inima. This conclusion is likely to hold in any case where very large

umbers of spectra need to be analysed, such as large-scale surv e ys
r very high time resolution spectroscopy of variable sources. The 
ore computationally e xpensiv e the spectral model is to e v aluate, the

reater the speed advantage of the neural network. It is also likely
hat neural networks will outperform automated spectral fitting in 
omplex parameter spaces with false minima, as the parameter space 
e considered here was relatively simple and the automated fits 

till get stuck occasionally. The PCA pre-processing also conv e ys
n advantage with higher resolution data, as in general it is more
omputationally e xpensiv e to e v aluate fits on spectra with more
nergy bins. PCA sidesteps this issue by reducing the dimensionality 
f the data input to the neural network, so the network can remain
mall regardless of the number of bins of the original spectra. A
elated hidden cost of the neural net training process is the time
eeded to e v aluate and decide on a network architecture, as there
s no fixed solution for this. PCA helps here as well, as it allows
 smaller network to be used, making it faster to train and more
enerally applicable. 

 C O N C L U S I O N S  

e have explored how ANNs can be used to estimate physical
arameters from raw X-ray spectra, without needing to go through 
 computationally e xpensiv e and potentially unreliable automated 
pectral fitting process. We use simulated Athena WFI spectra to train
he networks, and compare their ability to reco v er the parameters of
 test set of spectra with a conventional spectral fitting approach. Our
ain findings are as follows: 
MNRAS 514, 4061–4068 (2022) 
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(i) Relatively simple neural networks with two hidden layers and
2–64 neurons in each layer are able to reliably reco v er the ionization
nd column density of a warm absorber in synthetic spectra. This
pproach is orders of magnitude faster than automated spectral fitting,
llowing huge volumes of spectra to be processed in seconds. 

(ii) For most spectra, the spectral fitting approach is more accurate;
o we ver, for a minority of spectra, the fit gets stuck in a false
inimum, missing the correct solution by a wide margin. If these

utliers are taken into account, then the neural network approach is
ore accurate as well as being faster. If the outliers are excluded,

hen the accuracy of the best-performing network is slightly worse
han that of spectral fitting (a factor of 2–3 higher in mean squared
rror). 

(iii) Including a pre-processing step using PCA to reduce the
imensionality of the data prior to input into the neural network
eans that higher accuracy (a factor of 6 reduction in mean squared

rror) can be achieved with a simpler network (32 rather than 64
eurons in the hidden layers, and an input layer of 12 rather than
50 neurons). This has the added benefit of removing noise from the
ata set, and adds a mechanism for identifying when new spectra are
utside the assumptions of the training set. 

We conclude that this is a promising approach for the large-scale
nalysis of X-ray data from the next generation of instrumentation,
uch as Athena , allowing rapid analysis without compromising
n accuracy. Use cases include large-scale surveys or studies of
ndividual objects at high time resolution where the number of spectra
o be e v aluated is very large. We anticipate little use for this kind of
pproach with individual or small numbers of spectra, as the training
rocess is more computationally e xpensiv e than spectral fitting in
his regime. 
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