48 research outputs found

    Prenatal ultrasound and postmortem histologic evaluation of tooth germs: an observational, transversal study

    Get PDF
    Introduction: Hypodontia is the most frequent developmental anomaly of the orofacial complex, and its detection in prenatal ultrasound may indicate the presence of congenital malformations, genetic syndromes and chromosomal abnormalities.To date, only a few studies have evaluated the histological relationship of human tooth germs identified by two-dimensional (2D) ultrasonography. In order to analyze whether two-dimensional ultrasonography of tooth germs may be successfully used for identifying genetic syndromes, prenatal ultrasound images of fetal tooth germs obtained from a Portuguese population sample were compared with histological images obtained from fetal autopsies.Methods: Observational, descriptive, transversal study. The study protocol followed the ethical principles outlined by the Helsinki Declaration and was approved by the Ethics Committee of the School of Dental Medicine, University of Porto (FMDUP, Porto, Portugal) and of the Centro Hospitalar de Vila Nova de Gaia/Espinho (CHVNG/EPE, Porto, Portugal) as well as by the CGC Genetics Embryofetal Pathology Laboratory. Eighty-five fetuses examined by prenatal ultrasound screening from May 2011 to August 2012 had an indication for autopsy following spontaneous fetal death or medical termination of pregnancy. Of the 85 fetuses, 37 (43.5%) were randomly selected for tooth germ evaluation by routine histopathological analysis. Fetuses who were up to 30 weeks of gestation, and whose histological pieces were not representative of all maxillary tooth germs was excluded. Twenty four fetus between the 13th and 30th weeks of gestation fulfilled the parameters to autopsy.Results: Twenty four fetuses were submitted to histological evaluation and were determined the exact number, morphology, and mineralization of their tooth germs. All tooth germs were identifiable with ultrasonography as early as the 13th week of gestation. Of the fetuses autopsied, 41.7% had hypodontia (29.1% maxillary hypodontia and 20.9% mandibular hypodontia).Conclusions: This results indicateinfo:eu-repo/semantics/publishedVersio

    Death in the life of a tooth

    No full text

    Non-apoptotic functions of caspase-7 during osteogenesis

    Get PDF
    Caspase-3 and -7 are generally known for their central role in the execution of apoptosis. However, their function is not limited to apoptosis and under specific conditions activation has been linked to proliferation or differentiation of specialised cell types. In the present study, we followed the localisation of the activated form of caspase-7 during intramembranous (alveolar and mandibular bones) and endochondral (long bones of limbs) ossification in mice. In both bone types, the activated form of caspase-7 was detected from the beginning of ossification during embryonic development and persisted postnatally. The bone status was investigated by microCT in both wild-type and caspase-7-deficient adult mice. Intramembranous bone in mutant mice displayed a statistically significant decrease in volume while the mineral density was not altered. Conversely, endochondral bone showed constant volume but a significant decrease in mineral density in caspase-7 knock-out mice. Cleaved caspase-7 was present in a number of cells that did not show signs of apoptosis. PCR array analysis of the mandibular bone of caspase-7-deficient versus wild-type mice pointed to a significant decrease in mRNA levels for Msx1 and Smad1 in early bone formation. These observations might explain the decrease in the alveolar bone volume of adult knock-out mice. In conclusion, this study is the first to report a non-apoptotic function of caspase-7 in osteogenesis and also demonstrates further specificities in endochondral versus intramembranous ossification

    Expression of Fas, FasL, caspase-8 and other factors of the extrinsic apoptotic pathway during the onset of interdigital tissue elimination

    No full text
    Elimination of the interdigital web is considered to be the classical model for assessing apoptosis. So far, most of the molecules described in the process have been connected to the intrinsic (mitochondrial) pathway. The extrinsic (receptor mediated) apoptotic pathway has been rather neglected, although it is important in development, immunomodulation and cancer therapy. This work aimed to investigate factors of the extrinsic apoptotic machinery during interdigital regression with a focus on three crucial initiators: Fas, Fas ligand and caspase-8. Immunofluorescent analysis of mouse forelimb histological sections revealed abundant expression of these molecules prior to digit separation. Subsequent PCR Array analyses indicated the expression of several markers engaged in the extrinsic pathway. Between embryonic days 11 and 13, statistically significant increases in the expression of Fas and caspase-8 were observed, along with other molecules involved in the extrinsic apoptotic pathway such as Dapk1, Traf3, Tnsf12, Tnfrsf1A and Ripk1. These results demonstrate for the first time the presence of extrinsic apoptotic components in mouse limb development and indicate novel candidates in the molecular network accompanying the regression of interdigital tissue during digitalisation

    Incudomalleal joint formation: the roles of apoptosis, migration and downregulation

    Get PDF
    BACKGROUND: The middle ear of mammals is composed of three endochondrial ossicles, the stapes, incus and malleus. Joints link the malleus to the incus and the incus to the stapes. In the mouse the first arch derived malleus and incus are formed from a single Sox9 and Type II collagen expressing condensation that later subdivides to give rise to two separate ossicles. In contrast the stapes forms from a separate condensation derived from the second branchial arch. Fusion of the malleus and incus is observed in a number of human syndromes and results in conductive hearing loss. Understanding how this joint forms during normal development is thus an important step in furthering our understanding of such defects. RESULTS: We show that the developing incudomalleal joint is characterised by a lack of proliferation and discrete areas of apoptosis. Apoptosis has been suggested to aid in the removal of pre-cartilaginous cells from the joint region, allowing for the physical separation of the cartilaginous elements, however, we show that joint initiation is unaffected by blocking apoptosis. There is also no evidence of cell migration out of the presumptive joint region, as observed by labelling of joint and ossicle cells in culture. Using Type II collagen lacZ reporter mice, however, it is evident that cells in the presumptive joint region remain in place and downregulate cartilage markers. CONCLUSION: The malleus and incus first appear as a single united condensation expressing early cartilage markers. The incudomalleal joint region forms by cells in the presumptive joint region switching off cartilage markers and turning on joint markers. Failure in this process may result in fusion of this joint, as observed in human syndromes such as Branchio-Oto-Renal Syndrome or Treacher Collins Syndrome
    corecore