79 research outputs found

    Genetic plasticity of the Shigella virulence plasmid is mediated by intra- and inter-molecular events between insertion sequences

    Get PDF
    Acquisition of a single copy, large virulence plasmid, pINV, led to the emergence of Shigella spp. from Escherichia coli. The plasmid encodes a Type III secretion system (T3SS) on a 30kb pathogenicity island (PAI), and is maintained in a bacterial population through a series of toxin:antitoxin (TA) systems which mediate post-segrega tional killing (PSK). The T3SS imposes a significant cost on the bacterium, and strains which have lost the plasmid and/or genes encoding the T3SS grow faster than wild-type strains in the laboratory, and fail to bind the indicator dye Congo Red (CR). Our aim was to define the molecular events in Shigella flexneri that cause loss of Type III secretion (T3S), and to examine whether TA systems exert positional effects on pINV. During growth at 37°C, we found that deletions of regions of the plasmid including the PAI lead to the emergence of CR-negative colonies; deletions occur through intra-molecula r recombination events between insertion sequences (ISs) flanking the PAI. Furthermore, by repositioning MvpAT (which belongs to the VapBC family of TA systems) near the PAI, we demonstrate that the location of this TA system alters the rearrangements that lead to loss of T3S, indicating that MvpAT acts both globally (by reducing loss of pINV through PSK) as well as locally (by preventing loss of adjacent sequences). During growth at environmental temperatures, we show for the first time that pINV spontaneously integrates into different sites in the chromosome, and this is mediated by inter-molecular events involving IS 1294. Integration leads to reduced PAI gene expression and impaired secretion through the T3SS, while excision of pINV from the chromosome restores T3SS function. Therefore, pINV integration provides a reversible mechanism for Shigella to circumvent the metabolic burden imposed by pINV. Intra- and inter-molecular events between ISs, which are abundant in Shigella spp., mediate plasticity of S. flexneri pINV

    Cytotoxic and Pathogenic Properties of Klebsiella oxytoca Isolated from Laboratory Animals

    Get PDF
    Klebsiella oxytoca is an opportunistic pathogen implicated in various clinical diseases in animals and humans. Studies suggest that in humans K. oxytoca exerts its pathogenicity in part through a cytotoxin. However, cytotoxin production in animal isolates of K. oxytoca and its pathogenic properties have not been characterized. Furthermore, neither the identity of the toxin nor a complete repertoire of genes involved in K. oxytoca pathogenesis have been fully elucidated. Here, we showed that several animal isolates of K. oxytoca, including the clinical isolates, produced secreted products in bacterial culture supernatant that display cytotoxicity on HEp-2 and HeLa cells, indicating the ability to produce cytotoxin. Cytotoxin production appears to be regulated by the environment, and soy based product was found to have a strong toxin induction property. The toxin was identified, by liquid chromatography-mass spectrometry and NMR spectroscopy, as low molecular weight heat labile benzodiazepine, tilivalline, previously shown to cause cytotoxicity in several cell lines, including mouse L1210 leukemic cells. Genome sequencing and analyses of a cytotoxin positive K. oxytoca strain isolated from an abscess of a mouse, identified genes previously shown to promote pathogenesis in other enteric bacterial pathogens including ecotin, several genes encoding for type IV and type VI secretion systems, and proteins that show sequence similarity to known bacterial toxins including cholera toxin. To our knowledge, these results demonstrate for the first time, that animal isolates of K. oxytoca, produces a cytotoxin, and that cytotoxin production is under strict environmental regulation. We also confirmed tilivalline as the cytotoxin present in animal K. oxytoca strains. These findings, along with the discovery of a repertoire of genes with virulence potential, provide important insights into the pathogenesis of K. oxytoca. As a novel diagnostic tool, tilivalline may serve as a biomarker for K oxytoca-induced cytotoxicity in humans and animals through detection in various samples from food to diseased samples using LC-MS/MS. Induction of K. oxytoca cytotoxin by consumption of soy may be in part involved in the pathogenesis of gastrointestinal disease

    A Fundamental Regulatory Mechanism Operating through OmpR and DNA Topology Controls Expression of Salmonella Pathogenicity Islands SPI-1 and SPI-2

    Get PDF
    DNA topology has fundamental control over the ability of transcription factors to access their target DNA sites at gene promoters. However, the influence of DNA topology on protein–DNA and protein–protein interactions is poorly understood. For example, relaxation of DNA supercoiling strongly induces the well-studied pathogenicity gene ssrA (also called spiR) in Salmonella enterica, but neither the mechanism nor the proteins involved are known. We have found that relaxation of DNA supercoiling induces expression of the Salmonella pathogenicity island (SPI)-2 regulator ssrA as well as the SPI-1 regulator hilC through a mechanism that requires the two-component regulator OmpR-EnvZ. Additionally, the ompR promoter is autoregulated in the same fashion. Conversely, the SPI-1 regulator hilD is induced by DNA relaxation but is repressed by OmpR. Relaxation of DNA supercoiling caused an increase in OmpR binding to DNA and a concomitant decrease in binding by the nucleoid-associated protein FIS. The reciprocal occupancy of DNA by OmpR and FIS was not due to antagonism between these transcription factors, but was instead a more intrinsic response to altered DNA topology. Surprisingly, DNA relaxation had no detectable effect on the binding of the global repressor H-NS. These results reveal the underlying molecular mechanism that primes SPI genes for rapid induction at the onset of host invasion. Additionally, our results reveal novel features of the archetypal two-component regulator OmpR. OmpR binding to relaxed DNA appears to generate a locally supercoiled state, which may assist promoter activation by relocating supercoiling stress-induced destabilization of DNA strands. Much has been made of the mechanisms that have evolved to regulate horizontally-acquired genes such as SPIs, but parallels among the ssrA, hilC, and ompR promoters illustrate that a fundamental form of regulation based on DNA topology coordinates the expression of these genes regardless of their origins

    Proteolysis-Dependent Remodeling of the Tubulin Homolog FtsZ at the Division Septum in \u3ci\u3eEscherichia coli\u3c/i\u3e

    Get PDF
    During bacterial cell division a dynamic protein structure called the Z-ring assembles at the septum. The major protein in the Z-ring in Escherichia coli is FtsZ, a tubulin homolog that polymerizes with GTP. FtsZ is degraded by the two-component ATP-dependent protease ClpXP. Two regions of FtsZ, located outside of the polymerization domain in the unstructured linker and at the C-terminus, are important for specific recognition and degradation by ClpXP. We engineered a synthetic substrate containing green fluorescent protein (Gfp) fused to an extended FtsZ C-terminal tail (residues 317–383), including the unstructured linker and the C-terminal conserved region, but not the polymerization domain, and showed that it is sufficient to target a non-native substrate for degradation in vitro. To determine if FtsZ degradation regulates Z-ring assembly during division, we expressed a full length Gfp-FtsZ fusion protein in wild type and clp deficient strains and monitored fluorescent Z-rings. In cells deleted for clpX or clpP, or cells expressing protease-defective mutant protein ClpP(S97A), Z-rings appear normal; however, after photobleaching a region of the Z-ring, fluorescence recovers ~70% more slowly in cells without functional ClpXP than in wild type cells. Gfp-FtsZ(R379E), which is defective for degradation by ClpXP, also assembles into Z-rings that recover fluorescence ~2-fold more slowly than Z-rings containing Gfp-FtsZ. In vitro, ClpXP cooperatively degrades and disassembles FtsZ polymers. These results demonstrate that ClpXP is a regulator of Z-ring dynamics and that the regulation is proteolysis-dependent. Our results further show that FtsZ-interacting proteins in E. coli fine-tune Z-ring dynamics

    The Cost of Virulence: Retarded Growth of Salmonella Typhimurium Cells Expressing Type III Secretion System 1

    Get PDF
    Virulence factors generally enhance a pathogen's fitness and thereby foster transmission. However, most studies of pathogen fitness have been performed by averaging the phenotypes over large populations. Here, we have analyzed the fitness costs of virulence factor expression by Salmonella enterica subspecies I serovar Typhimurium in simple culture experiments. The type III secretion system ttss-1, a cardinal virulence factor for eliciting Salmonella diarrhea, is expressed by just a fraction of the S. Typhimurium population, yielding a mixture of cells that either express ttss-1 (TTSS-1+ phenotype) or not (TTSS-1− phenotype). Here, we studied in vitro the TTSS-1+ phenotype at the single cell level using fluorescent protein reporters. The regulator hilA controlled the fraction of TTSS-1+ individuals and their ttss-1 expression level. Strikingly, cells of the TTSS-1+ phenotype grew slower than cells of the TTSS-1− phenotype. The growth retardation was at least partially attributable to the expression of TTSS-1 effector and/or translocon proteins. In spite of this growth penalty, the TTSS-1+ subpopulation increased from <10% to approx. 60% during the late logarithmic growth phase of an LB batch culture. This was attributable to an increasing initiation rate of ttss-1 expression, in response to environmental cues accumulating during this growth phase, as shown by experimental data and mathematical modeling. Finally, hilA and hilD mutants, which form only fast-growing TTSS-1− cells, outcompeted wild type S. Typhimurium in mixed cultures. Our data demonstrated that virulence factor expression imposes a growth penalty in a non-host environment. This raises important questions about compensating mechanisms during host infection which ensure successful propagation of the genotype

    Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms

    Get PDF

    Stem cells reveal mechanisms of myotonic dystrophy type 1

    No full text

    Preventing acute gut wall damage in infectious diarrhoeas with glycosylated dendrimers

    Get PDF
    Copyright 2012 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License (CC BY-NC 3.0), which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposesIntestinal pathogens use the host's excessive inflammatory cytokine response, designed to eliminate dangerous bacteria, to disrupt epithelial gut wall integrity and promote their tissue invasion. We sought to develop a non-antibiotic-based approach to prevent this injury. Molecular docking studies suggested that glycosylated dendrimers block the TLR4-MD-2-LPS complex, and a 13.6kDa polyamidoamine (PAMAM) dendrimer glucosamine (DG) reduced the induction of human monocyte interleukin (IL)-6 by Gram-negative bacteria. In a rabbit model of shigellosis, PAMAM-DG prevented epithelial gut wall damage and intestinal villous destruction, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. Computational modelling studies identified a 3.3kDa polypropyletherimine (PETIM)-DG as the smallest likely bioactive molecule. In human monocytes, high purity PETIM-DG potently inhibited Shigella Lipid A-induced IL-6 expression. In rabbits, PETIM-DG prevented Shigella-induced epithelial gut wall damage, reduced local IL-6 and IL-8 expression, and minimized bacterial invasion. There was no change in β-defensin, IL-10, interferon-β, transforming growth factor-β, CD3 or FoxP3 expression. Small and orally delivered DG could be useful for preventing gut wall tissue damage in a wide spectrum of infectious diarrhoeal diseases.Peer reviewe
    corecore