9,405 research outputs found

    Quantiles for Fractions and Other Mixed Data

    Get PDF
    This paper studies the estimation of quantile regression for fractional data, focusing on the case where there are mass-points at zero or/and one. More generally, we propose a simple strategy for the estimation of the conditional quantiles of data from mixed distributions, which combines standard results on the estimation of censored and Box-Cox quantile regressions. The implementation of the proposed method is illustrated using a well-known dataset.

    Research issues in biological inspired flying robots

    Get PDF
    Biological inspired locomotion robotics is an area reveal-ing an increasing research and development. In spite of all the recent engineering advances, robots lack capabilities with respect to agility, adaptability, intelligent sensing, fault-tolerance, stealth, and utilization of in-situ power resources compared to some of the simplest biological organisms. The general premise of bio-inspired engineer-ing is to distill the principles incorporated in successful, nature-tested mechanisms, capturing the biomechatronic designs and minimalist operation principles from nature’s success strategies. Based on these concepts, several robots that adopt the same locomotion principles as animals, like legs for walking, fins for swimming, segmented body for creeping and peristaltic movements for worm like loco-motion, were developed in the last years. Recently, flap-ping wings robots are also stating to make their debut but there are several problems that need to be solved before they may fly autonomously. This paper analyses the ma-jor developments in this area and the directions towards future research.N/

    Optimal energy gaits for quadrupeds under variable locomotion conditions

    Get PDF
    This paper studies the adoption of periodic gaits of quadruped animals by multilegged artificial locomotion exercise. The purpose is to determine the gait to adopt at different velocities, under distinct robot and locomotion conditions, based on two performance measures. A set of experiments reveals the influence of the gait and the body and ground parameters upon the proposed indices. It is verified that the gait should be adapted to the robot forward velocity and to the conditions under which the robot is moving. The experiments also reveal that a gait that decreases the energy consumption generally implies an increase in the trajectory following errors.N/

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    Optimum Gait Selection for Quadruped Robots

    Get PDF
    This paper studies periodic gaits of quadruped animals and its application to multilegged artificial locomotion systems. The purpose is to determine the best set of gait and locomotion variables during walking, for different robot velocities and intrabody compliance characteristics, based on two formulated performance measures. A set of experiments reveals the influence of the gait and locomotion variables upon the proposed indices, namely that the gait and the locomotion parameters should be adapted to the robot forward velocity and to the robot intra-body compliance characteristics.N/

    Position and force control of a walking hexapod

    Get PDF
    This paper compares the performance of classical position PD algorithm with a cascade controller involving position and force feedback loops, for multi-legged locomotion systems and variable ground characteristics. For that objective the robot precribed motion is characterized in terms of several locomotion variables. Moreover, we formulate several performance measures of the walking robot based on the robot and terrain dynamical properties and on the robot hip and foot trajectory errors. Several experiments reveal the performance of the different control architectures in the proposed indices.N/

    Fractional PDª control of an hexapod robot

    Get PDF
    This paper studies the performance of a Fractional Order PDª controller in a hexapod robot with three dof legs and leg joint actuators having saturation. For that objective the robot prescribed motion is characterized in terms of several locomotion variables. Moreover, two indices measure the walking performance based on the mean absolute density of energy per travelled distance and on the hip trajectory errors. A set of simulation experiments reveals the influence of the different controller tuning upon the proposed indices.N/

    A literature review on the optimization of legged robots

    Get PDF
    Over the last two decades the research and development of legged locomotion robots has grown steadily. Legged systems present major advantages when compared with ‘traditional’ vehicles, because they allow locomotion in inaccessible terrain to vehicles with wheels and tracks. However, the robustness of legged robots, and especially their energy consumption, among other aspects, still lag behind mechanisms that use wheels and tracks. Therefore, in the present state of development, there are several aspects that need to be improved and optimized. Keeping these ideas in mind, this paper presents the review of the literature of different methods adopted for the optimization of the structure and locomotion gaits of walking robots. Among the distinct possible strategies often used for these tasks are referred approaches such as the mimicking of biological animals, the use of evolutionary schemes to find the optimal parameters and structures, the adoption of sound mechanical design rules, and the optimization of power-based indexes

    New Technologies for Climbing Robots Adhesion to Surfaces

    Get PDF
    The interest in the development of climbing robots is growing steadily. The main motivations are to increase the operation e ciency, by eliminating the costly assembly of sca olding, or to protect human health and safety in hazardous tasks. Climbing robots have already been developed for applications ranging from cleaning to inspection of constructions di cult to reach. These robots should be capable of travelling over di erent types of surfaces, with di erent inclinations, such as oors, walls, ceilings, and to walk between such surfaces. Furthermore, they should be able of adapting and recon guring for di erent environment conditions and to be self-contained. Regarding the adhesion to the surface, the robots should be able to produce a secure gripping force using a light-weight mechanism. This paper presents a survey of di erent technologies proposed and adopted for climbing robots adhesion to surfaces, focusing on the new technologies that are recently being developed to ful ll these objectives.N/
    corecore