593 research outputs found

    Bounded normal generation is not equivalent to topological bounded normal generation

    Get PDF
    We show that some derived L1\mathrm{L}^1 full groups provide examples of non simple Polish groups with the topological bounded normal generation property. In particular, it follows that there are Polish groups with the topological bounded normal generation property but not the bounded normal generation property.Comment: 11 page

    Numerical approximation of poroelasticity with random coefficients using Polynomial Chaos and Hybrid High-Order methods

    Get PDF
    In this work, we consider the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed probability distribution. We present the variational formulation of the stochastic partial differential system and establish its well-posedness. We then discuss the approximation of the parameter-dependent problem by non-intrusive techniques based on Polynomial Chaos decompositions. We specifically focus on sparse spectral projection methods, which essentially amount to performing an ensemble of deterministic model simulations to estimate the expansion coefficients. The deterministic solver is based on a Hybrid High-Order discretization supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the probability error of the Polynomial Chaos approximation with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem.Comment: 30 pages, 15 Figure

    Image transmission through a stable paraxial cavity

    Full text link
    We study the transmission of a monochromatic "image" through a paraxial cavity. Using the formalism of self-transform functions, we show that a transverse degenerate cavity transmits the self-transform part of the image, with respect to the field transformation over one round-trip of the cavity. This formalism gives a new insight on the understanding of the behavior of a transverse degenerate cavity, complementary to the transverse mode picture. An experiment of image transmission through a hemiconfocal cavity show the interest of this approach.Comment: submitted to Phys. Rev.

    High multiplicity W+jets predictions at NLO

    Full text link
    In these proceedings we present results from a recent calculation for the production of a W boson in conjunction with five jets at next-to-leading order in perturbative QCD. We also use results at lower multiplicities to extrapolate the cross section to the same process with six jets.Comment: 5 pages, Proceedings for the DIS2013 conferenc

    Quantum Noise in Multipixel Image Processing

    Full text link
    We consider the general problem of the quantum noise in a multipixel measurement of an optical image. We first give a precise criterium in order to characterize intrinsic single mode and multimode light. Then, using a transverse mode decomposition, for each type of possible linear combination of the pixels' outputs we give the exact expression of the detection mode, i.e. the mode carrying the noise. We give also the only way to reduce the noise in one or several simultaneous measurements.Comment: 8 pages and 1 figur

    Multimode Squeezing Properties of a Confocal Opo: Beyond the Thin Crystal Approximation

    Full text link
    Up to now, transverse quantum effects (usually labelled as "quantum imaging" effects) which are generated by nonlinear devices inserted in resonant optical cavities have been calculated using the "thin crystal approximation", i.e. taking into account the effect of diffraction only inside the empty part of the cavity, and neglecting its effect in the nonlinear propagation inside the nonlinear crystal. We introduce in the present paper a theoretical method which is not restricted by this approximation. It allows us in particular to treat configurations closer to the actual experimental ones, where the crystal length is comparable to the Rayleigh length of the cavity mode. We use this method in the case of the confocal OPO, where the thin crystal approximation predicts perfect squeezing on any area of the transverse plane, whatever its size and shape. We find that there exists in this case a "coherence length" which gives the minimum size of a detector on which perfect squeezing can be observed, and which gives therefore a limit to the improvement of optical resolution that can be obtained using such devices.Comment: soumis le 04.03.2005 a PR

    A study of transfer and prevalence of organic gunshot residues

    Get PDF
    The main goal of the present study was to determine the amounts and distribution of organic gunshot residues (OGSR) on the shooter’s upper body and clothing after discharging a pistol. A preliminary study was also performed to evaluate the prevalence of OGSR in the general population as well as in a police laboratory environment. In the transfer study, results indicated that OGSR are not only transferred to the hand of the shooter, but also to other parts of the upper body. Thus, wrists and forearms also represent interesting targets as they are washed less frequently than hands. Samples from the face and hair of the shooters resulted in no OGSR detection just after firing. It was also observed that the concentrations recovered from clothing are generally higher compared to the same skin area. Prevalence in both general (n = 27) and police populations (n = 25) was very low. No OGSR was detected in the samples from the general population and only two samples from the police population were found positive

    Application of the Principle of Maximum Conformality to Top-Pair Production

    Full text link
    A major contribution to the uncertainty of finite-order perturbative QCD predictions is the perceived ambiguity in setting the renormalization scale μr\mu_r. For example, by using the conventional way of setting μr[mt/2,2mt]\mu_r \in [m_t/2,2m_t], one obtains the total ttˉt \bar{t} production cross-section σttˉ\sigma_{t \bar{t}} with the uncertainty \Delta \sigma_{t \bar{t}}/\sigma_{t \bar{t}}\sim ({}^{+3%}_{-4%}) at the Tevatron and LHC even for the present NNLO level. The Principle of Maximum Conformality (PMC) eliminates the renormalization scale ambiguity in precision tests of Abelian QED and non-Abelian QCD theories. In this paper we apply PMC scale-setting to predict the ttˉt \bar t cross-section σttˉ\sigma_{t\bar{t}} at the Tevatron and LHC colliders. It is found that σttˉ\sigma_{t\bar{t}} remains almost unchanged by varying μrinit\mu^{\rm init}_r within the region of [mt/4,4mt][m_t/4,4m_t]. The convergence of the expansion series is greatly improved. For the (qqˉ)(q\bar{q})-channel, which is dominant at the Tevatron, its NLO PMC scale is much smaller than the top-quark mass in the small xx-region, and thus its NLO cross-section is increased by about a factor of two. In the case of the (gg)(gg)-channel, which is dominant at the LHC, its NLO PMC scale slightly increases with the subprocess collision energy s\sqrt{s}, but it is still smaller than mtm_t for s1\sqrt{s}\lesssim 1 TeV, and the resulting NLO cross-section is increased by 20\sim 20%. As a result, a larger σttˉ\sigma_{t\bar{t}} is obtained in comparison to the conventional scale-setting method, which agrees well with the present Tevatron and LHC data. More explicitly, by setting mt=172.9±1.1m_t=172.9\pm 1.1 GeV, we predict σTevatron,  1.96TeV=7.6260.257+0.265\sigma_{\rm Tevatron,\;1.96\,TeV} = 7.626^{+0.265}_{-0.257} pb, σLHC,  7TeV=171.85.6+5.8\sigma_{\rm LHC,\;7\,TeV} = 171.8^{+5.8}_{-5.6} pb and σLHC,  14TeV=941.326.5+28.4\sigma_{\rm LHC,\;14\,TeV} = 941.3^{+28.4}_{-26.5} pb. [full abstract can be found in the paper.]Comment: 15 pages, 11 figures, 5 tables. Fig.(9) is correcte
    corecore