1,715 research outputs found

    The Nature of [Ar III] Bright Knots in the Crab Nebula

    Get PDF
    The kinematic and morphological properties of a string of [Ar III] bright knots in the Crab Nebula are examined using 1994 - 1999 HST WFPC-2 images of the remnant. We find that five southern [Ar III] bright knots exhibit ordinary radial motions away from the nebula's center of expansion with magnitudes consistent with their projected radial displacements. These results do not support the suggestion by MacAlpine et al.(1994) that these knots might be moving rapidly away from the Crab pulsar due to a collimated wind. The HST images also do not show that the [Ar III] knots have unusual morphologies relative to other features in the remnant. Our proper motion results, when combined with radial velocity estimates, suggest these knots have relatively low space velocities implying relatively interior remnant locations thus placing them closer to the ionizing radiation from the Crab's synchrotron nebula. This might lead to higher knot gas temperatures thereby explaining the knots' unusual line emission strengths as MacAlpine et al.(1994) suspected.Comment: 11 pages including three figures. Submitted to the Astronomical Journa

    Spectroscopy and 3D imaging of the Crab nebula

    Full text link
    Spectroscopy of the Crab nebula along different slit directions reveals the 3 dimensional structure of the optical nebula. On the basis of the linear radial expansion result first discovered by Trimble (1968), we make a 3D model of the optical emission. Results from a limited number of slit directions suggest that optical lines originate from a complicated array of wisps that are located in a rather thin shell, pierced by a jet. The jet is certainly not prominent in optical emission lines, but the direction of the piercing is consistent with the direction of the X-ray and radio jet. The shell's effective radius is ~ 79 seconds of arc, its thickness about a third of the radius and it is moving out with an average velocity 1160 km/s.Comment: 21 pages, 14 figures, submitted to ApJ, 3D movie of the Crab nebula available at http://www.fiz.uni-lj.si/~vidrih

    Diluted Random Fields in Mixed Cyanide Crystals

    Full text link
    A percolation argument and a dilute compressible random field Ising model are used to present a simple model for mixed cyanide crystals. The model reproduces quantitatively several features of the phase diagrams altough some crude approximations are made. In particular critical thresholds x_c at which ferroelastic first order transitions disappear, are calculated. Moreover, transitions are found to remain first order down to x_c for all mixtures except for bromine, for which the transition becomes continuous. All the results are in full agreement with experimental data.Comment: 8 pages, late

    Electronic Correlations in Oligo-acene and -thiophene Organic Molecular Crystals

    Get PDF
    From first principles calculations we determine the Coulomb interaction between two holes on oligo-acene and -thiophene molecules in a crystal, as a function of the oligomer length. The relaxation of the molecular geometry in the presence of holes is found to be small. In contrast, the electronic polarization of the molecules that surround the charged oligomer, reduces the bare Coulomb repulsion between the holes by approximately a factor of two. In all cases the effective hole-hole repulsion is much larger than the calculated valence bandwidth, which implies that at high doping levels the properties of these organic semiconductors are determined by electron-electron correlations.Comment: 5 pages, 3 figure

    Electronic properties of silica nanowires

    Full text link
    Thin nanowires of silicon oxide were studied by pseudopotential density functional electronic structure calculations using the generalized gradient approximation. Infinite linear and zigzag Si-O chains were investigated. A wire composed of three-dimensional periodically repeated Si4O8 units was also optimized, but this structure was found to be of limited stability. The geometry, electronic structure, and Hirshfeld charges of these silicon oxide nanowires were computed. The results show that the Si-O chain is metallic, whereas the zigzag chain and the Si4O8 nanowire are insulators

    Temperature dependence of the electronic structure of semiconductors and insulators

    Full text link
    The renormalization of electronic eigenenergies due to electron-phonon coupling is sizable in many materials with light atoms. This effect, often neglected in ab-initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the numerous recent progresses in this field, and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a q-point sampling inside the BZ. For q-points close to G, we show that a divergence due to non-zero Born effective charge appears in the electron-phonon matrix elements, leading to a divergence of the integral over the BZ for band extrema. Although it should vanish for non-polar materials, unphysical residual Born effective charges are usually present in ab-initio calculations. Here, we propose a solution that improves the coupled q-point convergence dramatically. For polar materials, the problem is more severe: the divergence of the integral does not disappear in the adiabatic harmonic approximation, but only in the non-adiabatic harmonic approximation. In all cases, we study in detail the convergence behavior of the renormalization as the q-point sampling goes to infinity and the imaginary broadening parameter goes to zero. This allows extrapolation, thus enabling a systematic way to converge the renormalization for both polar and non-polar materials. Finally, the adiabatic and non-adiabatic theory, with corrections for the divergence problem, are applied to the study of five semiconductors and insulators: a-AlN, b-AlN, BN, diamond and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening and the renormalized electronic bandstructure.Comment: 27 pages and 26 figure

    Pulsar Jets: Implications for Neutron Star Kicks and Initial Spins

    Get PDF
    We study implications for the apparent alignment of the spin axes, proper-motions, and polarization vectors of the Crab and Vela pulsars. The spin axes are deduced from recent Chandra X-ray Observatory images that reveal jets and nebular structure having definite symmetry axes. The alignments indicate these pulsars were born either in isolation or with negligible velocity contributions from binary motions. We examine the effects of rotation and the conditions under which spin-kick alignment is produced for various models of neutron star kicks. If the kick is generated when the neutron star first forms by asymmetric mass ejection or/and neutrino emission, then the alignment requires that the protoneutron star possesses an original spin with period PsP_s much less than the kick timescale, thus spin-averaging the kick forces. The kick timescale ranges from 100 ms to 10 s depending on whether the kick is hydrodynamically driven or neutrino-magnetic field driven. For hydrodynamical models, spin-kick alignment further requires the rotation period of an asymmetry pattern at the radius near shock breakout (>100 km) to be much less than ~100 ms; this is difficult to satisfy unless rotation plays a dynamically important role in the core collapse and explosion (P_s\lo 1 ms). Aligned kick and spin vectors are inherent to the slow process of asymmetric electromagnetic radiation from an off-centered magnetic dipole. We reassess the viability of this effect, correcting a factor of 4 error in Harrison and Tademaru's calculation that increases the size of the effect. To produce a kick velocity of order a few hundred km/s requires that the neutron star be born with an initial spin close to 1 ms and that spindown due to r-mode driven gravitational radiation be inefficient compared to standard magnetic braking.Comment: Small changes/additions; final version to be published in ApJ, Vol.549 (March 10, 2001

    Path integral Monte Carlo simulations of silicates

    Full text link
    We investigate the thermal expansion of crystalline SiO2_2 in the β\beta-- cristobalite and the β\beta-quartz structure with path integral Monte Carlo (PIMC) techniques. This simulation method allows to treat low-temperature quantum effects properly. At temperatures below the Debye temperature, thermal properties obtained with PIMC agree better with experimental results than those obtained with classical Monte Carlo methods.Comment: 27 pages, 10 figures, Phys. Rev. B (in press

    Correlation effects in total energy of transition metals and related properties

    Full text link
    We present an accurate implementation of total energy calculations into the local density approximation plus dynamical mean-field theory (LDA+DMFT) method. The electronic structure problem is solved through the full potential linear Muffin-Tin Orbital (FP-LMTO) and Korringa-Kohn-Rostoker (FP-KKR) methods with a perturbative solver for the effective impurity suitable for moderately correlated systems. We have tested the method in detail for the case of Ni and investigated the sensitivity of the results to the computational scheme and to the complete self-consistency. It is demonstrated that the LDA+DMFT method can resolve a long-standing controversy between the LDA/GGA density functional approach and experiment for equilibrium lattice constant and bulk modulus of Mn.Comment: 14 pages, 5 figure

    The Distribution, Excitation and Formation of Cometary Molecules: Methanol, Methyl Cyanide and Ethylene Glycol

    Full text link
    We present an interferometric and single dish study of small organic species toward Comets C/1995 O1 (Hale-Bopp) and C/2002 T7 (LINEAR) using the BIMA interferometer at 3 mm and the ARO 12m telescope at 2 mm. For Comet Hale-Bopp, both the single-dish and interferometer observations of CH3OH indicate an excitation temperature of 105+/-5 K and an average production rate ratio Q(CH3OH)/Q(H2O)~1.3% at ~1 AU. Additionally, the aperture synthesis observations of CH3OH suggest a distribution well described by a spherical outflow and no evidence of significant extended emission. Single-dish observations of CH3CN in Comet Hale-Bopp indicate an excitation temperature of 200+/-10 K and a production rate ratio of Q(CH3CN)/Q(H2O)~0.017% at ~1 AU. The non-detection of a previously claimed transition of cometary (CH2OH)2 toward Comet Hale-Bopp with the 12m telescope indicates a compact distribution of emission, D<9'' (<8500 km). For the single-dish observations of Comet T7 LINEAR, we find an excitation temperature of CH3OH of 35+/-5 K and a CH3OH production rate ratio of Q(CH3OH)/Q(H2O)~1.5% at ~0.3 AU. Our data support current chemical models that CH3OH, CH3CN and (CH2OH)2 are parent nuclear species distributed into the coma via direct sublimation off cometary ices from the nucleus with no evidence of significant production in the outer coma.Comment: accepted for publication in Ap
    • …
    corecore