3,298 research outputs found

    Red Noise in Anomalous X-ray Pulsar Timing Residuals

    Full text link
    Anomalous X-ray Pulsars (AXPs), thought to be magnetars, exhibit poorly understood deviations from a simple spin-down called "timing noise". AXP timing noise has strong low-frequency components which pose significant challenges for quantification. We describe a procedure for extracting two quantities of interest, the intensity and power spectral index of timing noise. We apply this procedure to timing data from three sources: a monitoring campaign of five AXPs, observations of five young pulsars, and the stable rotator PSR B1937+21.Comment: submitted to the proceedings of the "40 Years of Pulsars" conferenc

    A spliceosomal intron of mitochondrial DNA origin

    Get PDF
    SummaryThe origin of spliceosomal introns is one of the most enduring mysteries in molecular biology. In nuclear genomes such as our own, the protein-coding regions of genes (exons) can be separated from one another by hundreds of thousands of base pairs (bp) of intronic (non-coding) DNA, and while they are often considered ‘junk’, introns are increasingly ascribed important regulatory functions [1]. Here we present evidence that an intron in a GTPase superfamily gene in the unicellular alga Bigelowiella natans is derived from — and was created by — the insertion of a fragment of mitochondrial DNA. Organelle-to-nucleus DNA transfer is an increasingly well-understood phenomenon, one that has the potential to greatly influence genome structure [2,3]. Our data suggest that such transfers could represent a hitherto underappreciated source of new spliceosomal introns

    No detectable radio emission from the magnetar-like pulsar in Kes 75

    Get PDF
    The rotation-powered pulsar PSR J1846-0258 in the supernova remnant Kes 75 was recently shown to have exhibited magnetar-like X-ray bursts in mid-2006. Radio emission has not yet been observed from this source, but other magnetar-like sources have exhibited transient radio emission following X-ray bursts. We report on a deep 1.9 GHz radio observation of PSR J1846-0258 with the 100-m Green Bank Telescope in late 2007 designed to search for radio pulsations or bursts from this target. We have also analyzed three shorter serendipitous 1.4 GHz radio observations of the source taken with the 64-m Parkes telescope during the 2006 bursting period. We detected no radio emission from PSR J1846-0258 in either the Green Bank or Parkes datasets. We place an upper limit of 4.9 \mu Jy on coherent pulsed emission from PSR J1846-0258 based on the 2007 November 2 observation, and an upper limit of 27 \mu Jy around the time of the X-ray bursts. Serendipitously, we observed radio pulses from the nearby RRAT J1846-02, and place a 3\sigma confidence level upper limit on its period derivative of 1.7 * 10^{-13}, implying its surface dipole magnetic field is less than 2.6 * 10^{13} G.Comment: 15 pages, 2 figures, submitted to Ap

    On the X-ray variability of magnetar 1RXS J170849.0-400910

    Get PDF
    We present a long-term X-ray flux and spectral analysis for 1RXS J170849.0-400910 using Swift/XRT spanning over 8 years from 2005-2013. We also analyze two observations from Chandra and XMM in the period from 2003-2004. In this 10-yr period, 1RXS J170849.0-400910 displayed several rotational glitches. Previous studies have claimed variations in the X-ray emission associated with some of the glitches. From our analysis we find no evidence for significant X-ray flux variations and evidence for only low-level spectral variations. We also present an updated timing solution for 1RXS J170849.0-400910, from RXTE and Swift observations, which includes a previously unreported glitch at MJD 56019. We discuss the frequency and implications of radiatively quiet glitches in magnetars.Comment: 9 pages, 2 figures, accepted for publication in Ap

    Current mixed methods practices in qualitative research: a content analysis of leading journals

    Get PDF
    Mixed methods research (MMR) has become increasingly popular in recent years. Yet, methodological challenges of mixing qualitative and quantitative data remain. Understanding how MMR is approached in qualitative research journals provides insights into lingering mixing issues. In this article, we content analyzed five leading qualitative research journals from 2003 to 2014, which represents the reflective period of MMR. Of the 5,254 articles published, 94, or 1.79%, were mixed methods in nature, comprising 44 theoretically oriented articles and 50 empirical articles. In terms of theoretical articles, five content-based themes were identified: (a) MMR advocacy, (b) philosophy issues, (c) procedural suggestions, (d) practical issues and best practices, and (e) future directions. In terms of empirical articles, 36% used exploratory sequential designs, primarily to develop instruments, and 52% explicitly identified as MMR. None of the studies included MMR questions, and development (21%) and complementarity (14%) were the primary rationales for mixing. In virtually all studies (98%), mixing occurred at the data interpretation stage through some comparison of qualitative and quantitative research. Qualitative data were prioritized in 86% of the studies. Based on these findings, it appears that MMR affects qualitative research most directly by influencing study design and study purpose; however, there is a strong tendency to conduct and publish qualitative and quantitative studies separately. Recommendations for publishing future MMR are discussed.Mandy M. Archibald, Amanda I. Radil, Xiaozhou Zhang, William E. Hanso

    X-ray Observations of XSS J12270-4859 in a New Low State: A Transformation to a Disk-Free Rotation-Powered Pulsar Binary

    Get PDF
    We present XMM-Newton and Chandra observations of the low-mass X-ray binary XSS J12270--4859, which experienced a dramatic decline in optical/X-ray brightness at the end of 2012, indicative of the disappearance of its accretion disk. In this new state, the system exhibits previously absent orbital-phase-dependent, large-amplitude X-ray modulations with a decline in flux at superior conjunction. The X-ray emission remains predominantly non-thermal but with an order of magnitude lower mean luminosity and significantly harder spectrum relative to the previous high flux state. This phenomenology is identical to the behavior of the radio millisecond pulsar binary PSR J1023+0038 in the absence of an accretion disk, where the X-ray emission is produced in an intra-binary shock driven by the pulsar wind. This further demonstrates that XSS J12270-4859 no longer has an accretion disk and has transformed to a full-fledged eclipsing "redback" system that hosts an active rotation-powered millisecond pulsar. There is no evidence for diffuse X-ray emission associated with the binary that may arise due to outflows or a wind nebula. An extended source situated 1.5' from XSS J12270--4859 is unlikely to be associated, and is probably a previously uncatalogued galaxy cluster.Comment: 8 pages, 6 figures; accepted for publication in the Astrophysical Journa

    Binary evolution with LOFT

    Full text link
    This is a White Paper in support of the mission concept of the Large Observatory for X-ray Timing (LOFT), proposed as a medium-sized ESA mission. We discuss the potential of LOFT for the study of very faint X-ray binaries, orbital period distribution of black hole X-ray binaries and neutron star spin up. For a summary, we refer to the paper.Comment: White Paper in Support of the Mission Concept of the Large Observatory for X-ray Timing. (v2 few typos corrected

    The SCUBA 8-mJy survey - I: Sub-millimetre maps, sources and number counts

    Get PDF
    We present maps, source lists, and number counts from the largest, unbiassed, extragalactic sub-mm survey so far undertaken with the SCUBA camera on the JCMT. Our maps cover 260 sq. arcmin, to a noise level S(850)=2.5 mJy/beam. We have reduced the data using both SURF, and our own pipeline which produces zero-footprint maps and noise images. The uncorrelated noise maps produced by the latter approach have allowed application of a maximum-likelihood method to measure the statistical significance of each peak, leading to properly quantified flux-density errors for all potential sources. We detect 19 sources with S/N > 4, 38 with S/N > 3.5, and 72 with S/N > 3. To assess completeness and the impact of source confusion we have applied our source extraction algorithm to a series of simulated images. The result is a new estimate of the sub-mm source counts in the flux-density range S(850)=5-15mJy, which we compare with other estimates, and with model predictions. Our estimate of the cumulative source count at S(850) > 8 mJy is 320 (+80,-100) per square degree. Assuming that the majority of sources have z > 1.5, the co-moving number density of high-z galaxies forming stars at a rate >1000 solar masses per year is 10^-5 per Mpc^3, with only a weak dependence on the precise redshift distribution. This number density corresponds to that of massive ellipticals with L > 3-4 L* at low redshift and is also the same as the co-moving number density of comparably massive, passively-evolving objects in the redshift band 1<z<2 inferred from recent surveys of extremely red objects. Thus the bright sub-mm sources can plausibly account for the formation of all present-day massive ellipticals. Improved z constraints, and a proper measurement of sub-mm clustering can refine or refute this picture.Comment: Minor revisions. 27 pages, 13 figures. Higher resolution versions of Figs 5,6,7 and 8 are available from the autho
    • …
    corecore