5,636 research outputs found
Slow synaptic dynamics in a network: from exponential to power-law forgetting
We investigate a mean-field model of interacting synapses on a directed
neural network. Our interest lies in the slow adaptive dynamics of synapses,
which are driven by the fast dynamics of the neurons they connect. Cooperation
is modelled from the usual Hebbian perspective, while competition is modelled
by an original polarity-driven rule. The emergence of a critical manifold
culminating in a tricritical point is crucially dependent on the presence of
synaptic competition. This leads to a universal power-law relaxation of
the mean synaptic strength along the critical manifold and an equally universal
relaxation at the tricritical point, to be contrasted with the
exponential relaxation that is otherwise generic. In turn, this leads to the
natural emergence of long- and short-term memory from different parts of
parameter space in a synaptic network, which is the most novel and important
result of our present investigations.Comment: 12 pages, 8 figures. Phys. Rev. E (2014) to appea
Universality in survivor distributions: Characterising the winners of competitive dynamics
We investigate the survivor distributions of a spatially extended model of
competitive dynamics in different geometries. The model consists of a
deterministic dynamical system of individual agents at specified nodes, which
might or might not survive the predatory dynamics: all stochasticity is brought
in by the initial state. Every such initial state leads to a unique and
extended pattern of survivors and non-survivors, which is known as an attractor
of the dynamics. We show that the number of such attractors grows exponentially
with system size, so that their exact characterisation is limited to only very
small systems. Given this, we construct an analytical approach based on
inhomogeneous mean-field theory to calculate survival probabilities for
arbitrary networks. This powerful (albeit approximate) approach shows how
universality arises in survivor distributions via a key concept -- the {\it
dynamical fugacity}. Remarkably, in the large-mass limit, the survival
probability of a node becomes independent of network geometry, and assumes a
simple form which depends only on its mass and degree.Comment: 12 pages, 6 figures, 2 table
Charge Detection in a Closed-Loop Aharonov-Bohm Interferometer
We report on a study of complementarity in a two-terminal "closed-loop"
Aharonov-Bohm interferometer. In this interferometer, the simple picture of
two-path interference cannot be applied. We introduce a nearby quantum point
contact to detect the electron in a quantum dot inserted in the interferometer.
We found that charge detection reduces but does not completely suppress the
interference even in the limit of perfect detection. We attribute this
phenomenon to the unique nature of the closed-loop interferometer. That is, the
closed-loop interferometer cannot be simply regarded as a two-path
interferometer because of multiple reflections of electrons. As a result, there
exist indistinguishable paths of the electron in the interferometer and the
interference survives even in the limit of perfect charge detection. This
implies that charge detection is not equivalent to path detection in a
closed-loop interferometer. We also discuss the phase rigidity of the
transmission probability for a two-terminal conductor in the presence of a
detector.Comment: 4 pages with 4 figure
Competition and cooperation:aspects of dynamics in sandpiles
In this article, we review some of our approaches to granular dynamics, now
well known to consist of both fast and slow relaxational processes. In the
first case, grains typically compete with each other, while in the second, they
cooperate. A typical result of {\it cooperation} is the formation of stable
bridges, signatures of spatiotemporal inhomogeneities; we review their
geometrical characteristics and compare theoretical results with those of
independent simulations. {\it Cooperative} excitations due to local density
fluctuations are also responsible for relaxation at the angle of repose; the
{\it competition} between these fluctuations and external driving forces, can,
on the other hand, result in a (rare) collapse of the sandpile to the
horizontal. Both these features are present in a theory reviewed here. An arena
where the effects of cooperation versus competition are felt most keenly is
granular compaction; we review here a random graph model, where three-spin
interactions are used to model compaction under tapping. The compaction curve
shows distinct regions where 'fast' and 'slow' dynamics apply, separated by
what we have called the {\it single-particle relaxation threshold}. In the
final section of this paper, we explore the effect of shape -- jagged vs.
regular -- on the compaction of packings near their jamming limit. One of our
major results is an entropic landscape that, while microscopically rough,
manifests {\it Edwards' flatness} at a macroscopic level. Another major result
is that of surface intermittency under low-intensity shaking.Comment: 36 pages, 23 figures, minor correction
Dynamical diversity and metastability in a hindered granular column near jamming
Granular media jam into a panoply of metastable states. The way in which
these states are achieved depends on the nature of local and global constraints
on grains; here we investigate this issue by means of a non-equilibrium
stochastic model of a hindered granular column near its jamming limit. Grains
feel the constraints of grains above and below them differently, depending on
their position. A rich phase diagram with four dynamical phases (ballistic,
activated, logarithmic and glassy) is revealed. The statistics of the jamming
time and of the metastable states reached as attractors of the zero-temperature
dynamics is investigated in each of these phases. Of particular interest is the
glassy phase, where intermittency and a strong deviation from Edwards' flatness
are manifest.Comment: 23 pages, 12 figure
Nonequilibrium Stationary States and Phase Transitions in Directed Ising Models
We study the nonequilibrium properties of directed Ising models with non
conserved dynamics, in which each spin is influenced by only a subset of its
nearest neighbours. We treat the following models: (i) the one-dimensional
chain; (ii) the two-dimensional square lattice; (iii) the two-dimensional
triangular lattice; (iv) the three-dimensional cubic lattice. We raise and
answer the question: (a) Under what conditions is the stationary state
described by the equilibrium Boltzmann-Gibbs distribution? We show that for
models (i), (ii), and (iii), in which each spin "sees" only half of its
neighbours, there is a unique set of transition rates, namely with exponential
dependence in the local field, for which this is the case. For model (iv), we
find that any rates satisfying the constraints required for the stationary
measure to be Gibbsian should satisfy detailed balance, ruling out the
possibility of directed dynamics. We finally show that directed models on
lattices of coordination number with exponential rates cannot
accommodate a Gibbsian stationary state. We conjecture that this property
extends to any form of the rates. We are thus led to the conclusion that
directed models with Gibbsian stationary states only exist in dimension one and
two. We then raise the question: (b) Do directed Ising models, augmented by
Glauber dynamics, exhibit a phase transition to a ferromagnetic state? For the
models considered above, the answers are open problems, to the exception of the
simple cases (i) and (ii). For Cayley trees, where each spin sees only the
spins further from the root, we show that there is a phase transition provided
the branching ratio, , satisfies
Recommended from our members
Health Status of the Uninsured: Opportunities for Improvement
Provides estimates of the geographic variations in the rates of self-reported fair or poor health status, asthma, and hypertension among uninsured children and adults in California
- …
