5,636 research outputs found

    Slow synaptic dynamics in a network: from exponential to power-law forgetting

    Full text link
    We investigate a mean-field model of interacting synapses on a directed neural network. Our interest lies in the slow adaptive dynamics of synapses, which are driven by the fast dynamics of the neurons they connect. Cooperation is modelled from the usual Hebbian perspective, while competition is modelled by an original polarity-driven rule. The emergence of a critical manifold culminating in a tricritical point is crucially dependent on the presence of synaptic competition. This leads to a universal 1/t1/t power-law relaxation of the mean synaptic strength along the critical manifold and an equally universal 1/t1/\sqrt{t} relaxation at the tricritical point, to be contrasted with the exponential relaxation that is otherwise generic. In turn, this leads to the natural emergence of long- and short-term memory from different parts of parameter space in a synaptic network, which is the most novel and important result of our present investigations.Comment: 12 pages, 8 figures. Phys. Rev. E (2014) to appea

    High conductivity indium-tin-oxide films

    Get PDF

    Universality in survivor distributions: Characterising the winners of competitive dynamics

    Full text link
    We investigate the survivor distributions of a spatially extended model of competitive dynamics in different geometries. The model consists of a deterministic dynamical system of individual agents at specified nodes, which might or might not survive the predatory dynamics: all stochasticity is brought in by the initial state. Every such initial state leads to a unique and extended pattern of survivors and non-survivors, which is known as an attractor of the dynamics. We show that the number of such attractors grows exponentially with system size, so that their exact characterisation is limited to only very small systems. Given this, we construct an analytical approach based on inhomogeneous mean-field theory to calculate survival probabilities for arbitrary networks. This powerful (albeit approximate) approach shows how universality arises in survivor distributions via a key concept -- the {\it dynamical fugacity}. Remarkably, in the large-mass limit, the survival probability of a node becomes independent of network geometry, and assumes a simple form which depends only on its mass and degree.Comment: 12 pages, 6 figures, 2 table

    Charge Detection in a Closed-Loop Aharonov-Bohm Interferometer

    Get PDF
    We report on a study of complementarity in a two-terminal "closed-loop" Aharonov-Bohm interferometer. In this interferometer, the simple picture of two-path interference cannot be applied. We introduce a nearby quantum point contact to detect the electron in a quantum dot inserted in the interferometer. We found that charge detection reduces but does not completely suppress the interference even in the limit of perfect detection. We attribute this phenomenon to the unique nature of the closed-loop interferometer. That is, the closed-loop interferometer cannot be simply regarded as a two-path interferometer because of multiple reflections of electrons. As a result, there exist indistinguishable paths of the electron in the interferometer and the interference survives even in the limit of perfect charge detection. This implies that charge detection is not equivalent to path detection in a closed-loop interferometer. We also discuss the phase rigidity of the transmission probability for a two-terminal conductor in the presence of a detector.Comment: 4 pages with 4 figure

    Competition and cooperation:aspects of dynamics in sandpiles

    Full text link
    In this article, we review some of our approaches to granular dynamics, now well known to consist of both fast and slow relaxational processes. In the first case, grains typically compete with each other, while in the second, they cooperate. A typical result of {\it cooperation} is the formation of stable bridges, signatures of spatiotemporal inhomogeneities; we review their geometrical characteristics and compare theoretical results with those of independent simulations. {\it Cooperative} excitations due to local density fluctuations are also responsible for relaxation at the angle of repose; the {\it competition} between these fluctuations and external driving forces, can, on the other hand, result in a (rare) collapse of the sandpile to the horizontal. Both these features are present in a theory reviewed here. An arena where the effects of cooperation versus competition are felt most keenly is granular compaction; we review here a random graph model, where three-spin interactions are used to model compaction under tapping. The compaction curve shows distinct regions where 'fast' and 'slow' dynamics apply, separated by what we have called the {\it single-particle relaxation threshold}. In the final section of this paper, we explore the effect of shape -- jagged vs. regular -- on the compaction of packings near their jamming limit. One of our major results is an entropic landscape that, while microscopically rough, manifests {\it Edwards' flatness} at a macroscopic level. Another major result is that of surface intermittency under low-intensity shaking.Comment: 36 pages, 23 figures, minor correction

    Dynamical diversity and metastability in a hindered granular column near jamming

    Full text link
    Granular media jam into a panoply of metastable states. The way in which these states are achieved depends on the nature of local and global constraints on grains; here we investigate this issue by means of a non-equilibrium stochastic model of a hindered granular column near its jamming limit. Grains feel the constraints of grains above and below them differently, depending on their position. A rich phase diagram with four dynamical phases (ballistic, activated, logarithmic and glassy) is revealed. The statistics of the jamming time and of the metastable states reached as attractors of the zero-temperature dynamics is investigated in each of these phases. Of particular interest is the glassy phase, where intermittency and a strong deviation from Edwards' flatness are manifest.Comment: 23 pages, 12 figure

    Nonequilibrium Stationary States and Phase Transitions in Directed Ising Models

    Full text link
    We study the nonequilibrium properties of directed Ising models with non conserved dynamics, in which each spin is influenced by only a subset of its nearest neighbours. We treat the following models: (i) the one-dimensional chain; (ii) the two-dimensional square lattice; (iii) the two-dimensional triangular lattice; (iv) the three-dimensional cubic lattice. We raise and answer the question: (a) Under what conditions is the stationary state described by the equilibrium Boltzmann-Gibbs distribution? We show that for models (i), (ii), and (iii), in which each spin "sees" only half of its neighbours, there is a unique set of transition rates, namely with exponential dependence in the local field, for which this is the case. For model (iv), we find that any rates satisfying the constraints required for the stationary measure to be Gibbsian should satisfy detailed balance, ruling out the possibility of directed dynamics. We finally show that directed models on lattices of coordination number z8z\ge8 with exponential rates cannot accommodate a Gibbsian stationary state. We conjecture that this property extends to any form of the rates. We are thus led to the conclusion that directed models with Gibbsian stationary states only exist in dimension one and two. We then raise the question: (b) Do directed Ising models, augmented by Glauber dynamics, exhibit a phase transition to a ferromagnetic state? For the models considered above, the answers are open problems, to the exception of the simple cases (i) and (ii). For Cayley trees, where each spin sees only the spins further from the root, we show that there is a phase transition provided the branching ratio, qq, satisfies q3q \ge 3
    corecore