4,736 research outputs found

    Novel metastable metallic and semiconducting germaniums

    Get PDF
    By means of ab initio metadynamics runs we explored the lower-pressure region of the phase diagram of germanium. A monoclinic germanium phase with four-membered rings, less dense than diamond and compressible into \beta-tin phase (tI4) was found. A metallic bct-5 phase, mechanically stable down to room conditions appeared between diamond and tI4. mC16 is a narrow-gap semiconductor, while bct-5 is metallic and potentially still superconducting in the very low pressure range. This finding may help resolving outstanding experimental issues.Comment: 6 figure

    Physics and application of photon number resolving detectors based on superconducting parallel nanowires

    Full text link
    The Parallel Nanowire Detector (PND) is a photon number resolving (PNR) detector which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. PNDs were fabricated on 3-4 nm thick NbN films grown on MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. PNDs showed a counting rate of 80 MHz and a pulse duration as low as 660ps full width at half maximum (FWHM). Building the histograms of the photoresponse peak, no multiplication noise buildup is observable. Electrical and optical equivalent models of the device were developed in order to study its working principle, define design guidelines, and develop an algorithm to estimate the photon number statistics of an unknown light. In particular, the modeling provides novel insight of the physical limit to the detection efficiency and to the reset time of these detectors. The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise

    What Automated Planning Can Do for Business Process Management

    Get PDF
    Business Process Management (BPM) is a central element of today organizations. Despite over the years its main focus has been the support of processes in highly controlled domains, nowadays many domains of interest to the BPM community are characterized by ever-changing requirements, unpredictable environments and increasing amounts of data that influence the execution of process instances. Under such dynamic conditions, BPM systems must increase their level of automation to provide the reactivity and flexibility necessary for process management. On the other hand, the Artificial Intelligence (AI) community has concentrated its efforts on investigating dynamic domains that involve active control of computational entities and physical devices (e.g., robots, software agents, etc.). In this context, Automated Planning, which is one of the oldest areas in AI, is conceived as a model-based approach to synthesize autonomous behaviours in automated way from a model. In this paper, we discuss how automated planning techniques can be leveraged to enable new levels of automation and support for business processing, and we show some concrete examples of their successful application to the different stages of the BPM life cycle

    Superspace calculation of the four-loop spectrum in N=6 supersymmetric Chern-Simons theories

    Get PDF
    Using N=2 superspace techniques we compute the four-loop spectrum of single trace operators in the SU(2) x SU(2) sector of ABJM and ABJ supersymmetric Chern-Simons theories. Our computation yields a four-loop contribution to the function h^2(\lambda) (and its ABJ generalization) in the magnon dispersion relation which has fixed maximum transcendentality and coincides with the findings in components given in the revised versions of arXiv:0908.2463 and arXiv:0912.3460. We also discuss possible scenarios for an all-loop function h^2(\lambda) that interpolates between weak and strong couplings.Comment: LaTeX, feynmp, 34 pages; v2: typos corrected, formulations improved, references adde

    High performance NbN nanowire superconducting single photon detectors fabricated on MgO substrates

    Get PDF
    We demonstrate high-performance nanowire superconducting single photon detectors (SSPDs) on ultrathin NbN films grown at a temperature compatible with monolithic integration. NbN films ranging from 150nm to 3nm in thickness were deposited by dc magnetron sputtering on MgO substrates at 400C. The superconducting properties of NbN films were optimized studying the effects of deposition parameters on film properties. SSPDs were fabricated on high quality NbN films of different thickness (7 to 3nm) deposited under optimal conditions. Electrical and optical characterizations were performed on the SSPDs. The highest QE value measured at 4.2K is 20% at 1300nm

    Hydrodynamic synchronisation of non-linear oscillators at low Reynolds number

    Full text link
    We introduce a generic model of weakly non-linear self-sustained oscillator as a simplified tool to study synchronisation in a fluid at low Reynolds number. By averaging over the fast degrees of freedom, we examine the effect of hydrodynamic interactions on the slow dynamics of two oscillators and show that they can lead to synchronisation. Furthermore, we find that synchronisation is strongly enhanced when the oscillators are non-isochronous, which on the limit cycle means the oscillations have an amplitude-dependent frequency. Non-isochronity is determined by a nonlinear coupling α\alpha being non-zero. We find that its (α\alpha) sign determines if they synchronise in- or anti-phase. We then study an infinite array of oscillators in the long wavelength limit, in presence of noise. For α>0\alpha > 0, hydrodynamic interactions can lead to a homogeneous synchronised state. Numerical simulations for a finite number of oscillators confirm this and, when α<0\alpha <0, show the propagation of waves, reminiscent of metachronal coordination.Comment: 4 pages, 2 figure

    Symmetry Breaking Phase Transitions in ABJM Theory with a Finite U(1) Chemical Potential

    Full text link
    We consider the U(1) charged sector of ABJM theory at finite temperature, which corresponds to the Reissner-Nordstrom AdS black hole in the dual type IIA supergravity description. Including back-reaction to the bulk geometry, we show that phase transitions occur to a broken phase where SU(4) R-symmetry of the field theory is broken spontaneously by the condensation of dimension one or two operators. We show both numerically and analytically that the relevant critical exponents for the dimension one operator agree precisely with those of mean field theory in the strongly coupled regime of the large N planar limit.Comment: 22 pages, 6 figures, typos corrected, references added, improved figures, minor changes, accepted for publication in Phys. Rev.

    Orbital-spin order and the origin of structural distortion in MgTi2_2O4_4

    Full text link
    We analyze electronic, magnetic, and structural properties of the spinel compound MgTi2_2O4_4 using the local density approximation+U method. We show how MgTi2_2O4_4 undergoes to a canted orbital-spin ordered state, where charge, spin and orbital degrees of freedom are frozen in a geometrically frustrated network by electron interactions. In our picture orbital order stabilize the magnetic ground state and controls the degree of structural distortions. The latter is dynamically derived from the cubic structure in the correlated LDA+U potential. Our ground-state theory provides a consistent picture for the dimerized phase of MgTi2_2O4_4, and might be applicable to frustrated materials in general.Comment: 6 pages, 6 figure
    • …
    corecore