89,174 research outputs found

    Sum rules in the heavy quark limit of QCD

    Full text link
    In the leading order of the heavy quark expansion, we propose a method within the OPE and the trace formalism, that allows to obtain, in a systematic way, Bjorken-like sum rules for the derivatives of the elastic Isgur-Wise function ξ(w)\xi(w) in terms of corresponding Isgur-Wise functions of transitions to excited states. A key element is the consideration of the non-forward amplitude, as introduced by Uraltsev. A simplifying feature of our method is to consider currents aligned along the initial and final four-velocities. As an illustration, we give a very simple derivation of Bjorken and Uraltsev sum rules. On the other hand, we obtain a new class of sum rules that involve the products of IW functions at zero recoil and IW functions at any ww. Special care is given to the needed derivation of the projector on the polarization tensors of particles of arbitrary integer spin. The new sum rules give further information on the slope ρ2=ξ(1)\rho^2 = - \xi '(1) and also on the curvature σ2=ξ(1)\sigma^2 = \xi '' (1), and imply, modulo a very natural assumption, the inequality σ254ρ2\sigma^2 \geq {5\over 4} \rho^2, and therefore the absolute bound σ21516\sigma^2 \geq {15 \over 16}.Comment: 64 pages, Late

    Critical Analysis of Theoretical Estimates for BB to Light Meson Form Factors and the BψK(K)B \to \psi K(K^{\ast}) Data

    Full text link
    We point out that current estimates of form factors fail to explain the non-leptonic decays BψK(K)B \to \psi K(K^{\ast}) and that the combination of data on the semi-leptonic decays DK(K)νD \to K(K^{\ast})\ell \nu and on the non-leptonic decays BψK(K)B \to \psi K(K^{\ast}) (in particular recent po\-la\-ri\-za\-tion data) severely constrain the form (normalization and q2q^2 dependence) of the heavy-to-light meson form factors, if we assume the factorization hypothesis for the latter. From a simultaneous fit to \bpsi and \dk data we find that strict heavy quark limit scaling laws do not hold when going from DD to BB and must have large corrections that make softer the dependence on the masses. We find that A1(q2)A_1(q^2) should increase slower with \qq than A2,V,f+A_2, V, f_+. We propose a simple parametrization of these corrections based on a quark model or on an extension of the \hhs laws to the \hl case, complemented with an approximately constant A1(q2)A_1(q^2). We analyze in the light of these data and theoretical input various theoretical approaches (lattice calculations, QCD sum rules, quark models) and point out the origin of the difficulties encountered by most of these schemes. In particular we check the compatibility of several quark models with the heavy quark scaling relations.Comment: 48 pages, DAPNIA/SPP/94-24, LPTHE-Orsay 94/1

    New challenges for Adaptive Optics: Extremely Large Telescopes

    Get PDF
    The performance of an adaptive optics (AO) system on a 100m diameter ground based telescope working in the visible range of the spectrum is computed using an analytical approach. The target Strehl ratio of 60% is achieved at 0.5um with a limiting magnitude of the AO guide source near R~10, at the cost of an extremely low sky coverage. To alleviate this problem, the concept of tomographic wavefront sensing in a wider field of view using either natural guide stars (NGS) or laser guide stars (LGS) is investigated. These methods use 3 or 4 reference sources and up to 3 deformable mirrors, which increase up to 8-fold the corrected field size (up to 60\arcsec at 0.5 um). Operation with multiple NGS is limited to the infrared (in the J band this approach yields a sky coverage of 50% with a Strehl ratio of 0.2). The option of open-loop wavefront correction in the visible using several bright NGS is discussed. The LGS approach involves the use of a faint (R ~22) NGS for low-order correction, which results in a sky coverage of 40% at the Galactic poles in the visible.Comment: 11 pages, 9 figures, 4 tables. Accepted for publication in MNRA

    New Baryons in the Delta eta and Delta omega Channels

    Full text link
    The decays of excited nonstrange baryons into the final states Delta eta and Delta omega are examined in a relativized quark pair creation model. The wavefunctions and parameters of the model are fixed by previous calculations of N pi and N pi pi, etc., decays through various quasi-two body channels including N eta and N omega. Our results show that the combination of thresholds just below the region of interest and the isospin selectivity of these channels should allow the discovery of several new baryons in such experiments.Comment: 10 pages, RevTe

    Valence Quark Spin Distribution Functions

    Get PDF
    The hyperfine interactions of the constituent quark model provide a natural explanation for many nucleon properties, including the Delta-N splitting, the charge radius of the neutron, and the observation that the proton's quark distribution function ratio d(x)/u(x)->0 as x->1. The hyperfine-perturbed quark model also makes predictions for the nucleon spin-dependent distribution functions. Precision measurements of the resulting asymmetries A_1^p(x) and A_1^n(x) in the valence region can test this model and thereby the hypothesis that the valence quark spin distributions are "normal".Comment: 16 pages, 2 Postscript figure

    Statistics of fermions in a dd-dimensional box near a hard wall

    Full text link
    We study NN noninteracting fermions in a domain bounded by a hard wall potential in d1d \geq 1 dimensions. We show that for large NN, the correlations at the edge of the Fermi gas (near the wall) at zero temperature are described by a universal kernel, different from the universal edge kernel valid for smooth potentials. We compute this dd dimensional hard edge kernel exactly for a spherical domain and argue, using a generalized method of images, that it holds close to any sufficiently smooth boundary. As an application we compute the quantum statistics of the position of the fermion closest to the wall. Our results are then extended in several directions, including non-smooth boundaries such as a wedge, and also to finite temperature.Comment: 5 pages + 14 pages (Supp. Mat.), 6 figure

    Forensics in Industrial Control System: A Case Study

    Full text link
    Industrial Control Systems (ICS) are used worldwide in critical infrastructures. An ICS system can be a single embedded system working stand-alone for controlling a simple process or ICS can also be a very complex Distributed Control System (DCS) connected to Supervisory Control And Data Acquisition (SCADA) system(s) in a nuclear power plant. Although ICS are widely used to-day, there are very little research on the forensic acquisition and analyze ICS artefacts. In this paper we present a case study of forensics in ICS where we de-scribe a method of safeguarding important volatile artefacts from an embedded industrial control system and several other source

    Weak local rules for planar octagonal tilings

    Full text link
    We provide an effective characterization of the planar octagonal tilings which admit weak local rules. As a corollary, we show that they are all based on quadratic irrationalities, as conjectured by Thang Le in the 90s.Comment: 23 pages, 6 figure

    Baryon Self-Energy With QQQ Bethe-Salpeter Dynamics In The Non-Perturbative QCD Regime: n-p Mass Difference

    Get PDF
    A qqq BSE formalism based on DB{\chi}S of an input 4-fermion Lagrangian of `current' u,d quarks interacting pairwise via gluon-exchange-propagator in its {\it non-perturbative} regime, is employed for the calculation of baryon self-energy via quark-loop integrals. To that end the baryon-qqq vertex function is derived under Covariant Instantaneity Ansatz (CIA), using Green's function techniques. This is a 3-body extension of an earlier q{\bar q} (2-body) result on the exact 3D-4D interconnection for the respective BS wave functions under 3D kernel support, precalibrated to both q{\bar q} and qqq spectra plus other observables. The quark loop integrals for the neutron (n) - proton (p) mass difference receive contributions from : i) the strong SU(2) effect arising from the d-u mass difference (4 MeV); ii) the e.m. effect of the respective quark charges. The resultant n-p difference comes dominantly from d-u effect (+1.71 Mev), which is mildly offset by e.m.effect (-0.44), subject to gauge corrections. To that end, a general method for QED gauge corrections to an arbitrary momentum dependent vertex function is outlined, and on on a proportionate basis from the (two-body) kaon case, the net n-p difference works out at just above 1 MeV. A critical comparison is given with QCD sum rules results.Comment: be 27 pages, Latex file, and to be published in IJMPA, Vol 1

    Size distributions of shocks and static avalanches from the Functional Renormalization Group

    Full text link
    Interfaces pinned by quenched disorder are often used to model jerky self-organized critical motion. We study static avalanches, or shocks, defined here as jumps between distinct global minima upon changing an external field. We show how the full statistics of these jumps is encoded in the functional-renormalization-group fixed-point functions. This allows us to obtain the size distribution P(S) of static avalanches in an expansion in the internal dimension d of the interface. Near and above d=4 this yields the mean-field distribution P(S) ~ S^(-3/2) exp(-S/[4 S_m]) where S_m is a large-scale cutoff, in some cases calculable. Resumming all 1-loop contributions, we find P(S) ~ S^(-tau) exp(C (S/S_m)^(1/2) -B/4 (S/S_m)^delta) where B, C, delta, tau are obtained to first order in epsilon=4-d. Our result is consistent to O(epsilon) with the relation tau = 2-2/(d+zeta), where zeta is the static roughness exponent, often conjectured to hold at depinning. Our calculation applies to all static universality classes, including random-bond, random-field and random-periodic disorder. Extended to long-range elastic systems, it yields a different size distribution for the case of contact-line elasticity, with an exponent compatible with tau=2-1/(d+zeta) to O(epsilon=2-d). We discuss consequences for avalanches at depinning and for sandpile models, relations to Burgers turbulence and the possibility that the above relations for tau be violated to higher loop order. Finally, we show that the avalanche-size distribution on a hyper-plane of co-dimension one is in mean-field (valid close to and above d=4) given by P(S) ~ K_{1/3}(S)/S, where K is the Bessel-K function, thus tau=4/3 for the hyper plane.Comment: 34 pages, 30 figure
    corecore