30 research outputs found

    Al-pillared acid-activated montmorillonite modified electrodes

    No full text
    The role of acid activation of the montmorillonite matrix before pillaring and the effect of calcination temperature on the efficiency of Al-pillared acid-activated clay modified electrodes have been investigated. The electrochemical behaviour of untreated and pillared montmorillonites was compared with that of two pillared acid-activated montmorillonites. The pillared acid-activated montmorillonite modified electrodes present better electroactivity than the modified electrodes of the conventional pillared montmorillonite towards cationic and anionic redox active species. Mild acid activation of the montmorillonite matrix and a calcination temperature up to 500 °C lead to modifying materials that efficiently concentrate the cationic species. Lower calcination temperatures reverse the electrode activity. For anionic redox active species the best electroactivity was observed for pillared acid-activated montmorillonite films corresponding to a medium acid activation. In that case, a dependence of the electrochemical response on the pH was confirmed. The mechanism responsible for the observed cationic electroactivity was investigated and the behaviour of the Al-pillared acid-activated montmorillonite modified electrodes was attributed to the particular structure as well as the enhanced meso-external surface area and acidity of the clay films

    Preparation and Characterization of Polystyrene Hybrid Composites Reinforced with 2D and 3D Inorganic Fillers

    No full text
    Polystyrene (PS)/silicate composites were prepared with the addition of two organoclays (orgMMT and orgZenith) and two mesoporous silicas (SBA-15 and MCF) via (i) solution casting and (ii) melt compounding methods. X-ray diffraction (XRD) analysis evidenced an intercalated structure for PS/organoclay nanocomposites. Thermogravimetric analysis indicated improvement in the thermal stability of PS-nanocomposites compared to the pristine polymer. This enhancement was more prevalent for the nanocomposites prepared with a lab-made organoclay (orgZenith). Tensile measurement results indicated that elastic modulus increment was more prevalent (up to 50%) for microcomposites prepared using mesoporous silicas as filler. Organoclay addition led to a decrease in oxygen transmission rate (OTR) values. This decrement reached up to 50% for high organoclay content films in comparison to pristine PS film. Decrement above 80% was measured for microcomposites with mesoporous silicas and 5 wt% filler content obtained via melt compounding
    corecore