109 research outputs found

    Probing ice-nucleation processes on the molecular level using second harmonic generation spectroscopy

    Get PDF
    We present and characterize a novel setup to apply Second Harmonic Generation (SHG) spectroscopy in total internal reflection geometry (TIR) to heterogeneous freezing research. It allows to monitor the evolution of water structuring at solid surfaces at low temperatures prior to heterogeneous ice nucleation. Apart from the possibility of investigating temperature dependence, a major novelty in our setup is the ability of measuring sheet-like samples in TIR geometry in a direct way. As a main experimental result, we find that our method can discriminate between good and poor ice nucleating surfaces. While at the sapphire basal plane, which is known to be a poor ice nucleator, no structural rearrangement of the water molecules is found prior to freezing, the basal plane surface of mica, an analogue to ice active mineral dust surfaces, exhibits a strong change in the nonlinear optical properties at temperatures well above the freezing transition. This is interpreted as a pre-activation, i.e. an increase in the local ordering of the interfacial water which is expected to facilitate the crystallization of ice at the surface. The results are in line with recent predictions by Molecular Dynamics simulations on a similar system

    Electrolyte layering at the calcite(104)-water interface indicated by Rb⁺- and Se(VI) K-edge resonant interface diffraction

    Get PDF
    Calcite-water interface reactions are of major importance in various environmental settings as well as in industrial applications. Here we present resonant interface diffraction results on the calcite(104)-aqueous solution interface{,} measured in solutions containing either 10 mmol L-1 RbCl or 0.5 mmol L-1 Se(vi). Results indicate that Rb+ ions enter the surface adsorbed water layers and adsorb at the calcite(104)-water interface in an inner-sphere fashion. A detailed analysis based on specular and off-specular resonant interface diffraction data reveals three distinct Rb+ adsorption species: one 1.2 A above the surface{,} the second associated with surface adsorbed water molecules 3.2 A above the surface{,} and the third adsorbed in an outer-sphere fashion 5.6 A above the surface. A peak in resonant amplitude between L = 1.5 and L = 3.0 is interpreted as signal from a layered electrolyte structure. The presence of a layered electrolyte structure seems to be confirmed by data measured in the presence of Se(vi)

    A set-up for simultaneous measurement of second harmonic generation and streaming potential and some test applications

    Get PDF
    We present a measurement cell that allows simultaneous measurement of second harmonic generation (SHG) and streaming potential (SP) at mineral-water interfaces with flat specimen that are suitable for non-linear optical (NLO) studies. The set-up directly yields SHG data for the interface of interest and can also be used to obtain information concerning the influence of flow on NLO signals from that interface. The streaming potential is at present measured against a reference substrate (PTFE). The properties of this inert reference can be independently determined for the same conditions. With the new cell, for the first time the SHG signal and the SP for flat surfaces have been simultaneously measured on the same surface. This can in turn be used to unambiguously relate the two observations for identical solution composition. The SHG test of the cell with a fluorite sample confirmed previously observed differences in NLO signal under flow vs. no flow conditions in sum frequency generation (SFG) investigations. As a second test surface, an inert ("hydrophobic") OTS covered sapphire-c electrolyte interface was studied to verify the zeta-potential measurements with the new cell. For this system we obtained combined zeta-potential/SHG data in the vicinity of the point of zero charge, which were found to be proportional to each other as expected. Furthermore, on the accessible time scales of the SHG measurements no effects of flow, flow velocity and stopped flow occurred on the interfacial water structure. This insensitivity to flow for the inert surface was corroborated by concomitant molecular dynamics simulations. Finally, the set-up was used for simultaneous measurements of the two properties as a function of pH in automated titrations with an oxidic surface. Different polarization combinations obtained in two separate titrations, yielded clearly different SHG data, while under identical conditions zeta-potentials were exactly reproduced. The polarization combination that is characteristic for dipoles perpendicular to the surface scaled with the zeta-potentials over the pH-range studied, while the other did not. The work provides an advanced approach for investigating liquid/surface interactions which play a major role in our environment. The set-up can be upgraded for SFG studies, which will allow more detailed studies on the chemistry and the water structure at a given interface, but also the combined study of specific adsorption including kinetics in combination with electrokinetics. Such investigations are crucial for the basic understanding of many environmental processes from aquatic to atmospheric systems

    Probing ice-nucleation processes on the molecular level using second harmonic generation spectroscopy

    Get PDF
    We present and characterize a novel setup to apply second harmonic generation (SHG) spectroscopy in total internal reflection geometry (TIR) to heterogeneous freezing research. It allows to monitor the evolution of water structuring at solid surfaces at low temperatures prior to heterogeneous ice nucleation. Apart from the possibility of investigating temperature dependence, a major novelty in our setup is the ability of measuring sheet-like samples in TIR geometry in a direct way. As a main experimental result, we find that our method can discriminate between good and poor ice nucleating surfaces. While at the sapphire basal plane, which is known to be a poor ice nucleator, no structural rearrangement of the water molecules is found prior to freezing, the basal plane surface of mica, an analogue to ice active mineral dust surfaces, exhibits a strong change in the nonlinear optical properties at temperatures well above the freezing transition. This is interpreted as a pre-activation, i.e. an increase in the local ordering of the interfacial water which is expected to facilitate the crystallization of ice at the surface. The results are in line with recent predictions by molecular dynamics simulations on a similar system. © Author(s) 2015

    Tailoring the stability/aggregation of one-dimensional TiO₂(B)/titanate nanowires using surfactants

    Get PDF
    The increased utilization of one-dimensional (1D) TiO2 and titanate nanowires (TNWs) in various applications was the motivation behind studying their stability in this work, given that stability greatly influences both the success of the application and the environmental impact. Due to their high abundance in aqueous environments and their rich technological applicability, surfactants are among the most interesting compounds used for tailoring the stability. The aim of this paper is to determine the influence of surfactant molecular structure on TNW stability/aggregation behavior in water and aqueous NaBr solution by dynamic and electrophoretic light scattering. To accomplish this, two structurally different quaternary ammonium surfactants (monomeric DTAB and the corresponding dimeric 12-2-12) at monomer and micellar concentrations were used to investigate TNW stability in water and NaBr. It was shown that TNWs are relatively stable in Milli-Q water. However, the addition of NaBr induces aggregation, especially as the TNW mass concentration increases. DTAB and 12-2-12 adsorb on TNW surfaces as a result of the superposition of favorable electrostatic and hydrophobic interactions. As expected, the interaction of TNWs with 12-2-12 was stronger than with DTAB, due to the presence of two positively charged head groups and two hydrophobic tails. As a consequence of the higher adsorption of 12-2-12, TNWs remained stable in both media, while DTAB showed an opposite behavior. In order to gain more insight into changes in the surface properties after surfactant adsorption on the TNW surface, a surface complexation model was employed. With this first attempt to quantify the contribution of the surfactant structure on the adsorption equilibrium according to the observed differences in the intrinsic log K values, it was shown that 12-2-12 interacts more strongly with TNWs than DTAB. The modelling results enable a better understanding of the interaction between TNWs and surfactants as well as the prediction of the conditions that can promote stabilization or aggregatio

    Preliminary investigation of chlorine speciation in zirconolite glass-ceramics for plutonium residues by analysis of Cl K-edge XANES

    Get PDF
    A zirconolite glass-ceramic material is a candidate wasteform for immobilisation of chlorine contaminated plutonium residues, in which plutonium and chlorine are partitioned to the zirconolite and aluminosilicate glass phase, respectively. A preliminary investigation of chlorine speciation was undertaken by analysis of Cl K-edge X-ray Absorption Near Edge Spectroscopy (XANES), to understand the incorporation mechanism. Cl was found to be speciated as the Cl- anion within the glass phase, according to the characteristic chemical shift of the X-ray absorption edge. By comparison with Cl K-edge XANES data acquired from reference compounds, the local environment of the Cl- anion is most closely approximated by the mineral marialite, in which Cl is co-ordinate to 4 x Na and/or Ca atoms

    Adsorption of dissolved aluminum on sapphire-c and kaolinite: Implications for points of zero charge of clay minerals

    Get PDF
    We have studied the impact of dissolved aluminum on interfacial properties of two aluminum bearing minerals, corundum and kaolinite. The effect of intentionally adding dissolved aluminum on electrokinetic potential of basal plane surfaces of sapphire was studied by streaming potential measurements as a function of pH and was complemented by a second harmonic generation (SHG) study at pH 6. The electrokinetic data show a similar trend as the SHG data, suggesting that the SHG electric field correlates to zeta-potential. A comparable study was carried out on kaolinite particles. In this case electrophoretic mobility was measured as a function of pH. In both systems the addition of dissolved aluminum caused significant changes in the charging behavior. The isoelectric point consistently shifted to higher pH values, the extent of the shift depending on the amount of aluminum present or added. The experimental results imply that published isoelectric points of clay minerals may have been affected by this phenomenon. The presence of dissolved aluminum in experimental studies may be caused by particular pre-treatment methods (such as washing in acids and subsequent adsorption of dissolved aluminum) or even simply by starting a series of measurements from extreme pH (causing dissolution), and subsequently varying the pH in the very same batch. This results in interactions of dissolved aluminum with the target surface. A possible interpretation of the experimental results could be that at low aluminum concentrations adatoms of aluminum (we will refer to adsorbed mineral constituents as adatoms) can form at the sapphire basal plane, which can be rather easily removed. Simultaneously, once the surface has been exposed to sufficiently high aluminum concentration, a visible change of the surface is seen by AFM which is attributed to a surface precipitate that cannot be removed under the conditions employed in the current study. In conclusion, whenever pre-treatment or the starting point of an experiment favor the dissolution of aluminum, dissolved Al may remain in the experimental system and interact with the target surfaces. The systems are then no longer pristine and points of zero charge or sorption data are those of aluminum-bearing systems
    corecore