79 research outputs found

    Fetal tracheolaryngeal airway obstruction: prenatal evaluation by sonography and MRI

    Get PDF
    We reviewed the sonographic and MRI findings of tracheolaryngeal obstruction in the fetus. Conditions that can cause tracheolaryngeal obstruction include extrinsic causes such as lymphatic malformation, cervical teratoma and vascular rings and intrinsic causes such as congenital high airway obstruction syndrome (CHAOS). Accurate distinction of these conditions by sonography or MRI can help facilitate parental counseling and management, including the decision to utilize the ex utero intrapartum treatment (EXIT) procedure

    Reliability and Validity of Simplified Chinese Version of Roland-Morris Questionnaire in Evaluating Rural and Urban Patients with Low Back Pain

    Get PDF
    OBJECTIVE: The causes of low back pain in China and Western countries are extremely different. We attempted to analyze the risk factors of low back pain in urban and rural patients under the dual economy with the simplified Chinese version of Roland-Morris disability questionnaire (SC-RMDQ) to demonstrate that SC-RMDQ could evaluate patients with low back pain arising from different causes. METHODS: Roland-Morris disability questionnaire was translated into SCRMDQ according to international guidelines for questionnaire adaptation. In this study, causes of low back pain of 187 outpatients and inpatients (99 urban patients and 88 rural patients) were analyzed. All patients underwent simplified Chinese version of Roland-Morris disability questionnaire (SC-RMDQ), simplified Chinese Oswestry disability index (SCODI) and visual analogue scale (VAS). Reliability was tested using reproducibility (intraclass coefficient of correlation--ICC) and internal consistency (Cronbach's alpha). Validity was tested using Pearson correlation analysis. RESULTS: The leading causes for low back pain were sedentariness (38.4%) and vibration (18.1%) in urban patients and waist bending (48.9%) and spraining (25%) in rural patients. Although causes of low back pain in the two groups of population were completely different, SCRMDQ had high internal consistency (Cronbach's α value of 0.874 in urban patients and 0.883 in rural patients) and good reproducibility (ICC value of .952 in urban patients and 0.949 in rural patients, P<0.01). SCRMDQ also showed significant correlation with Simplified Chinese version of Oswestry disability index (SCODI) and visual analogue scale (VAS) in rural areas (SCRMDQ-SCODI r = 0.841; SCRMDQ-VAS: r = 0.685, P<0.01) and in urban areas (SCRMDQ-SCODI: r = 0.818, P<0.01; SCRMDQ-VAS: r = 0.666, P<0.01). CONCLUSIONS: Although causes of low back pain are completely different in rural and urban patients, SCRMDQ has a good reliability and validity, which is a reliable clinical method to evaluate disability of rural and urban patients

    Metal backed versus all-polyethylene unicompartmental knee arthroplasty: the effect of implant thickness on proximal tibial strain in an experimentally validated finite element model

    Get PDF
    Objectives Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). Materials and Methods A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed. Results Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 µε correlated strongly: R = 0.947, R2 = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R2 = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 µε. Conclusion AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection
    • …
    corecore