37 research outputs found

    A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci

    Get PDF
    Allergic disease is very common and carries substantial public-health burdens. We conducted a meta-analysis of genome-wide associations with self-reported cat, dust-mite and pollen allergies in 53,862 individuals. We used generalized estimating equations to model shared and allergy-specific genetic effects. We identified 16 shared susceptibility loci with association P < 5 × 10-8, including 8 loci previously associated with asthma, as well as 4p14 near TLR1, TLR6 and TLR10 (rs2101521, P = 5.3 × 10 -21); 6p21.33 near HLA-C and MICA (rs9266772, P = 3.2 × 10 -12); 5p13.1 near PTGER4 (rs7720838, P = 8.2 × 10 -11); 2q33.1 in PLCL1 (rs10497813, P = 6.1 × 10-10), 3q28 in LPP (rs9860547, P = 1.2 × 10-9); 20q13.2 in NFATC2 (rs6021270, P = 6.9 × 10-9), 4q27 in ADAD1 (rs17388568, P = 3.9 × 10-8); and 14q21.1 near FOXA1 and TTC6 (rs1998359, P = 4.8 × 10-8). We identified one locus with substantial evidence of differences in effects across allergies at 6p21.32 in the class II human leukocyte antigen (HLA) region (rs17533090, P = 1.7 × 10-12), which was strongly associated with cat allergy. Our study sheds new light on the shared etiology of immune and autoimmune disease

    The regulation of IL-10 expression

    Get PDF
    Interleukin (IL)-10 is an important immunoregulatory cytokine and an understanding of how IL-10 expression is controlled is critical in the design of immune intervention strategies. IL-10 is produced by almost all cell types within the innate (including macrophages, monocytes, dendritic cells (DCs), mast cells, neutrophils, eosinophils and natural killer cells) and adaptive (including CD4(+) T cells, CD8(+) T cells and B cells) immune systems. The mechanisms of IL-10 regulation operate at several stages including chromatin remodelling at the Il10 locus, transcriptional regulation of Il10 expression and post-transcriptional regulation of Il10 mRNA. In addition, whereas some aspects of Il10 gene regulation are conserved between different immune cell types, several are cell type- or stimulus-specific. Here, we outline the complexity of IL-10 production by discussing what is known about its regulation in macrophages, monocytes, DCs and CD4(+) T helper cells

    Exploring the success of Good Samaritan organ donation in New Zealand

    No full text
    The rate of living kidney donation from 2006 to 2012 was roughly the same in Australia and New Zealand, but the rate of Good Samaritan donation was significantly higher in New Zealand (1.49 donors/million) than in Australia (0.23 donors/million). Three possible reasons for New Zealand's high rate of Good Samaritan donation are explored: (1) since 2005, New Zealand has offered a tax-free financial safety net for living donors; (2) unlike Australia, New Zealand is not carved into jurisdictional segments with multiple policies on Good Samaritan donation, lending to a streamlined approach; (3) New Zealand embraces e-technology to communicate the concept of Good Samaritan donation to the public. Additionally, New Zealand's recent initiatives to increase the rate of living donation are described. </jats:p

    GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice

    No full text
    Tregs not only keep immune responses to autoantigens in check, but also restrain those directed toward pathogens and the commensal microbiota. Control of peripheral immune homeostasis by Tregs relies on their capacity to accumulate at inflamed sites and appropriately adapt to their local environment. To date, the factors involved in the control of these aspects of Treg physiology remain poorly understood. Here, we show that the canonical Th2 transcription factor GATA3 is selectively expressed in Tregs residing in barrier sites including the gastrointestinal tract and the skin. GATA3 expression in both murine and human Tregs was induced upon TCR and IL-2 stimulation. Although GATA3 was not required to sustain Treg homeostasis and function at steady state, GATA3 played a cardinal role in Treg physiology during inflammation. Indeed, the intrinsic expression of GATA3 by Tregs was required for their ability to accumulate at inflamed sites and to maintain high levels of Foxp3 expression in various polarized or inflammatory settings. Furthermore, our data indicate that GATA3 limits Treg polarization toward an effector T cell phenotype and acquisition of effector cytokines in inflamed tissues. Overall, our work reveals what we believe to be a new facet in the complex role of GATA3 in T cells and highlights what may be a fundamental role in controlling Treg physiology during inflammation
    corecore