938 research outputs found

    Characterization of a ballistic supermirror neutron guide

    Full text link
    We describe the beam characteristics of the first ballistic supermirror neutron guide H113 that feeds the neutron user facility for particle physics PF1B of the Institute Laue-Langevin, Grenoble (ILL). At present, the neutron capture flux density of H113 at its 20x6cm2 exit window is 1.35x10^10/cm^2/s, and will soon be raised to above 2x10^10/cm^2/s. Beam divergence is no larger than beam divergence from a conventional Ni coated guide. A model is developed that permits rapid calculation of beam profiles and absolute event rates from such a beam. We propose a procedure that permits inter-comparability of the main features of beams emitted from ballistic or conventional neutron guides.Comment: 15 pages, 11 figures, to be submitted to Nuclear Instruments and Methods

    Measurement of the Neutrino Asymmetry Parameter B in Neutron Decay

    Full text link
    A new measurement of the neutrino asymmetry parameter B in neutron decay, the angular correlation between neutron spin and anti-neutrino momentum, is presented. The result, B=0.9802(50), agrees with the Standard Model expectation and earlier measurements, and permits improved tests on ``new physics'' in neutron decay.Comment: 4 pages, 2 figures; v2: revised PRL versio

    On gravity as an entropic force

    Full text link
    We consider E. Verlinde's proposal that gravity is an entropic force -- we shall call this theory entropic gravity (EG) -- and reanalyze a recent claim that this theory is in contradiction with the observation of the gravitationally-bound ground state of neutrons in the GRANIT experiment. We find that EG does not necessarily contradict the existence of gravitationally-bound quantum states of neutrons in the Earth's gravitational field, since EG is equivalent to Newtonian gravity in this case. However, certain transitions between the gravitationally-bound quantum states of neutrons, in particular spontaneous decays of excited states, which can hopefully be observed in future experiments, cannot be explained in the framework of EG, unless essential ingredients are introduced into it. Otherwise, a quantized description of gravity will be required.Comment: 6 pages, v2: the possibility that graviton may appear as an emergent concept in EG is noted, few improvements in arguments and presentation, some typos and grammar corrected. To appear in Phys. Lett.

    GRANIT project: a trap for gravitational quantum states of UCN

    Full text link
    Previous studies of gravitationally bound states of ultracold neutrons showed the quantization of energy levels, and confirmed quantum mechanical predictions for the average size of the two lowest energy states wave functions. Improvements in position-like measurements can increase the accuracy by an order of magnitude only. We therefore develop another approach, consisting in accurate measurements of the energy levels. The GRANIT experiment is devoted to the study of resonant transitions between quantum states induced by an oscillating perturbation. According to Heisenberg's uncertainty relations, the accuracy of measurement of the energy levels is limited by the time available to perform the transitions. Thus, trapping quantum states will be necessary, and each source of losses has to be controlled in order to maximize the lifetime of the states. We discuss the general principles of transitions between quantum states, and consider the main systematical losses of neutrons in a trap.Comment: presented in ISINN 15 seminar, Dubn

    Dynamical response of the Hodgkin-Huxley model in the high-input regime

    Full text link
    The response of the Hodgkin-Huxley neuronal model subjected to stochastic uncorrelated spike trains originating from a large number of inhibitory and excitatory post-synaptic potentials is analyzed in detail. The model is examined in its three fundamental dynamical regimes: silence, bistability and repetitive firing. Its response is characterized in terms of statistical indicators (interspike-interval distributions and their first moments) as well as of dynamical indicators (autocorrelation functions and conditional entropies). In the silent regime, the coexistence of two different coherence resonances is revealed: one occurs at quite low noise and is related to the stimulation of subthreshold oscillations around the rest state; the second one (at intermediate noise variance) is associated with the regularization of the sequence of spikes emitted by the neuron. Bistability in the low noise limit can be interpreted in terms of jumping processes across barriers activated by stochastic fluctuations. In the repetitive firing regime a maximization of incoherence is observed at finite noise variance. Finally, the mechanisms responsible for spike triggering in the various regimes are clearly identified.Comment: 14 pages, 24 figures in eps, submitted to Physical Review

    Measurement of the Proton Asymmetry Parameter C in Neutron Beta Decay

    Full text link
    The proton asymmetry parameter C in neutron decay describes the correlation between neutron spin and proton momentum. In this Letter, the first measurement of this quantity is presented. The result C=-0.2377(26) agrees with the Standard Model expectation. The coefficient C provides an additional parameter for new and improved Standard Model tests. From a differential analysis of the same data (assuming the Standard Model), we obtain lambda=-1.275(16) as ratio of axial-vector and vector coupling constant.Comment: 4 pages, 2 figure

    On entropic gravity: the entropy postulate, entropy content of screens and relation to quantum mechanics

    Get PDF
    We consider the controversial hypothesis that gravity is an entropic force that has its origin in the thermodynamics of holographic screens. Several key aspects of entropic gravity are discussed. In particular, we revisit and elaborate on our criticism of the recent claim that entropic gravity fails to explain observations involving gravitationally-bound quantum states of neutrons in the GRANIT experiment and gravitationally induced quantum interference. We argue that the analysis leading to this claim is troubled by a misinterpretation concerning the relation between the microstates of a holographic screen and the state of a particle in the emergent space, engendering inconsistencies. A point of view that could resolve the inconsistencies is presented. We expound the general idea of the aforementioned critical analysis of entropic gravity in such a consistent setting. This enables us to clarify the problem and to identify a premise whose validity will decide the faith of the criticism against entropic gravity. It is argued that in order to reach a sensible conclusion we need more detailed knowledge on entropic gravity. These arguments are relevant to any theory of emergent space, where the entropy of the microscopic system depends on the distribution of matter in the emergent space.Comment: 15 pages; v2: presentation and arguments improved, particularly in section 5; accepted to Phys. Lett.
    corecore