2,779 research outputs found
Aspects of Density Fluctuations in Compressible MHD Turbulence
We study scaling relations of compressible isothermal strongly magnetized
turbulence using numerical simulations with resolution 512. We find a good
correspondence of our results with the Fleck (1996) model of compressible
hydrodynamic turbulence. In particular, we find that the density-weighted
velocity, i.e. , proposed in
Kritsuk et al. (2007) obeys the Kolmogorov scaling, i.e. for the high Mach number turbulence. Similarly, we find that the
exponents of the third order structure functions for stay
equal to unity for all Mach numbers studied. The scaling of higher order
correlations obeys the She-L\'{e}v\^{e}que (1994) scalings corresponding to the
two-dimensional dissipative structures, and this result does not change with
the Mach number either. In contrast to velocity which exhibits
different scaling parallel and perpendicular to the local magnetic field, the
scaling of is similar in both directions. In addition, we find
that the peaks of density create a hierarchy in which both physical and column
densities decrease with the scale in accordance to the Fleck (1996)
predictions. This hierarchy can be related ubiquitous small ionized and neutral
structures (SINS) in the interstellar gas. We believe that studies of
statistics of the column density peaks can provide both consistency check for
the turbulence velocity studies and insight into supersonic turbulence, when
the velocity information is not available.Comment: 10 pages, 7 figures, Proceeings for 6th Annual International
Astrophysics Conference, Honolulu, 200
Scaling Relations of Compressible MHD Turbulence
We study scaling relations of compressible strongly magnetized turbulence. We
find a good correspondence of our results with the Fleck (1996) model of
compressible hydrodynamic turbulence. In particular, we find that the
density-weighted velocity, i.e. , proposed in Kritsuk et
al. (2007) obeys the Kolmogorov scaling, i.e. for the
high Mach number turbulence. Similarly, we find that the exponents of the third
order structure functions for stay equal to unity for the all the Mach
numbers studied. The scaling of higher order correlations obeys the She-Leveque
(1994) scalings corresponding to the two-dimensional dissipative structures,
and this result does not change with the Mach number either. In contrast to
which exhibits different scaling parallel and perpendicular to the local
magnetic field, the scaling of is similar in both directions. In addition,
we find that the peaks of density create a hierarchy in which both physical and
column densities decrease with the scale in accordance to the Fleck (1996)
predictions. This hierarchy can be related ubiquitous small ionized and neutral
structures (SINS) in the interstellar gas. We believe that studies of
statistics of the column density peaks can provide both consistency check for
the turbulence velocity studies and insight into supersonic turbulence, when
the velocity information is not available.Comment: 4 pages, 5 figure
Turbulence in collisionless plasmas : statistical analysis from numerical simulations with pressure anisotropy
In recent years, we have experienced increasing interest in the understanding of the physical properties of collisionless plasmas, mostly because of the large number of astrophysical environments (e. g. the intracluster medium (ICM)) containing magnetic fields that are strong enough to be coupled with the ionized gas and characterized by densities sufficiently low to prevent the pressure isotropization with respect to the magnetic line direction. Under these conditions, a new class of kinetic instabilities arises, such as firehose and mirror instabilities, which have been studied extensively in the literature. Their role in the turbulence evolution and cascade process in the presence of pressure anisotropy, however, is still unclear. In this work, we present the first statistical analysis of turbulence in collisionless plasmas using three-dimensional numerical simulations and solving double-isothermal magnetohydrodynamic equations with the Chew-Goldberger-Low laws closure (CGL-MHD). We study models with different initial conditions to account for the firehose and mirror instabilities and to obtain different turbulent regimes. We found that the CGL-MHD subsonic and supersonic turbulences show small differences compared to the MHD models in most cases. However, in the regimes of strong kinetic instabilities, the statistics, i.e. the probability distribution functions (PDFs) of density and velocity, are very different. In subsonic models, the instabilities cause an increase in the dispersion of density, while the dispersion of velocity is increased by a large factor in some cases. Moreover, the spectra of density and velocity show increased power at small scales explained by the high growth rate of the instabilities. Finally, we calculated the structure functions of velocity and density fluctuations in the local reference frame defined by the direction of magnetic lines. The results indicate that in some cases the instabilities significantly increase the anisotropy of fluctuations. These results, even though preliminary and restricted to very specific conditions, show that the physical properties of turbulence in collisionless plasmas, as those found in the ICM, may be very different from what has been largely believed. Implications can range from interchange of energies to cosmic ray acceleration.Publisher PDFPeer reviewe
The role of pressure anisotropy in the turbulent intracluster medium
In low-density plasma environments, such as the intracluster medium (ICM),
the Larmour frequency is much larger than the ion-ion collision frequency. In
such a case, the thermal pressure becomes anisotropic with respect to the
magnetic field orientation and the evolution of the turbulent gas is more
correctly described by a kinetic approach. A possible description of these
collisionless scenarios is given by the so-called kinetic magnetohydrodynamic
(KMHD) formalism, in which particles freely stream along the field lines, while
moving with the field lines in the perpendicular direction. In this way a
fluid-like behavior in the perpendicular plane is restored. In this work, we
study fast growing magnetic fluctuations in the smallest scales which operate
in the collisionless plasma that fills the ICM. In particular, we focus on the
impact of a particular evolution of the pressure anisotropy and its
implications for the turbulent dynamics of observables under the conditions
prevailing in the ICM. We present results from numerical simulations and
compare the results which those obtained using an MHD formalism.Comment: 7 pages, 14 figures, Journal of Physics: Conference Serie
Numerical Studies of Weakly Stochastic Magnetic Reconnection
We study the effects of turbulence on magnetic reconnection using
three-dimensional numerical simulations. This is the first attempt to test a
model of fast magnetic reconnection proposed by Lazarian & Vishniac (1999),
which assumes the presence of weak, small-scale magnetic field structure near
the current sheet. This affects the rate of reconnection by reducing the
transverse scale for reconnection flows and by allowing many independent flux
reconnection events to occur simultaneously. We performed a number of
simulations to test the dependencies of the reconnection speed, defined as the
ratio of the inflow velocity to the Alfven speed, on the turbulence power, the
injection scale and resistivity. Our results show that turbulence significantly
affects the topology of magnetic field near the diffusion region and increases
the thickness of the outflow region. We confirm the predictions of the Lazarian
& Vishniac model. In particular, we report the growth of the reconnection speed
proportional to ~ V^2, where V is the amplitude of velocity at the injection
scale. It depends on the injection scale l as ~ (l/L)^(2/3), where L is the
size of the system, which is somewhat faster but still roughly consistent with
the theoretical expectations. We also show that for 3D reconnection the Ohmic
resistivity is important in the local reconnection events only, and the global
reconnection rate in the presence of turbulence does not depend on it.Comment: 8 pages, 8 figure
- …