23 research outputs found

    RNA integrity in post-mortem samples: influencing parameters and implications on RT-qPCR assays

    Get PDF
    Abstract Messenger RNA (mRNA) profiling in postmortem human tissue might reveal information about gene expression at the time point of death or close to it. When working with post-mortem human tissue, one is confronted with a natural RNA degradation caused by several parameters which are not yet fully understood. The aims of the present study were to analyse the influence of impaired RNA integrity on the reliability of quantitative gene expression data and to identify ante-and post-mortem parameters that might lead to reduced RNA integrities in post-mortem human brain, cardiac muscle and skeletal muscle tissues. Furthermore, this study determined the impact of several parameters like type of tissue, age at death, gender and body mass index (BMI), as well as duration of agony, cause of death and post-mortem interval on the RNA integrity. The influence of RNA integrity on the reliability of quantitative gene expression data was analysed by generating degradation profiles for three gene transcripts. Based on the deduced cycle of quantification data, this study shows that reverse transcription quantitative polymerase chain reaction (RT-qPCR) performance is affected by impaired RNA integrity. Depending on the transcript and tissue type, a shift in cycle threshold values of up to two cycles was observed. Determining RNA integrity number of 136 post-mortem samples revealed significantly different RNA qualities among the three tissue types with brain revealing significantly lower integrities compared to skeletal and cardiac muscle. The body mass index was found to influence RNA integrity in skeletal muscle tissue (M. iliopsoas). Samples originating from deceased with a BMI>25 were of significantly lower integrity compared to samples from normal weight donors. Correct data normalisation was found to partly diminish the effects caused by impaired RNA quality. Nevertheless, it can be concluded that in post-mortem tissue with low RNA integrity numbers, the detection of large differences in gene expression activities might still be possible, whereas small expression differences are prone to misinterpretation due to degradation. Thus, when working with post-mortem Electronic supplementary material The online version of this articl

    Differential overexpression of SERPINA3 in human prion diseases

    Get PDF
    Prion diseases are fatal neurodegenerative disorders with sporadic, genetic or acquired etiologies. The molecular alterations leading to the onset and the spreading of these diseases are still unknown. In a previous work we identified a five-gene signature able to distinguish intracranially BSE-infected macaques from healthy ones, with SERPINA3 showing the most prominent dysregulation. We analyzed 128 suitable frontal cortex samples, from prion-affected patients (variant Creutzfeldt-Jakob disease (vCJD) n = 20, iatrogenic CJD (iCJD) n = 11, sporadic CJD (sCJD) n = 23, familial CJD (gCJD) n = 17, fatal familial insomnia (FFI) n = 9, Gerstmann-Sträussler-Scheinker syndrome (GSS)) n = 4), patients with Alzheimer disease (AD, n = 14) and age-matched controls (n = 30). Real Time-quantitative PCR was performed for SERPINA3 transcript, and ACTB, RPL19, GAPDH and B2M were used as reference genes. We report SERPINA3 to be strongly up-regulated in the brain of all human prion diseases, with only a mild up-regulation in AD. We show that this striking up-regulation, both at the mRNA and at the protein level, is present in all types of human prion diseases analyzed, although to a different extent for each specific disorder. Our data suggest that SERPINA3 may be involved in the pathogenesis and the progression of prion diseases, representing a valid tool for distinguishing different forms of these disorders in humans
    corecore