251 research outputs found

    Production and antioxidative activity of alcoholic beverages made from Thai ou yeast and black rice (Oryza sativa var. Indica cv. Shiun)

    Get PDF
    Fermentation yeast was isolated from a Thai traditional alcoholic beverage called Thai ou, which is drunk through bamboo tubes. The isolated yeast was identified as a strain of the genus Saccharomyces cerevisiae. The alcoholic beverage made with the isolated yeast designated as S. cerevisiae NP01 from black rice grains had an ethanol concentration of 12.4 to 13.1% (v/v) and a large amount of phenolic compounds. The resulting alcoholic beverages made from black rice grains were red in color, especially those made from uncooked black rice, which had a brilliant red hue similar to that of red or rosé wine. The amount of anthocyanin in the beverages made from uncooked black rice with NP01 and industrial wine yeast W-4 was 118 and 131 μg/ml, respectively. The anthocyanin content of beverages made from uncooked black rice was higher than that of the beverages made from the cooked black rice. The antioxidative activity of alcoholic beverages made from uncooked black rice was also higher than that of beverages made from cooked black rice. In the course of this study, the use of NP01 yeast produced black rice wine that was red in color and exhibited antioxidative activity.Key words: Antioxidative activity, ou, black rice, anthocyanin, alcoholic beverage

    Erratum to: Concentric Multiple Rings by Droplet Epitaxy: Fabrication and Study of the Morphological Anisotropy

    Get PDF
    We present the Molecular Beam Epitaxy fabrication of complex GaAs/AlGaAs nanostructures by Droplet Epitaxy, characterized by the presence of concentric multiple rings. We propose an innovative experimental procedure that allows the fabrication of individual portions of the structure, controlling their diameter by only changing the substrate temperature. The obtained nanocrystals show a significant anisotropy between [110] and [1–10] crystallographic directions, which can be ascribed to different activation energies for the Ga atoms migration processes

    Optically monitored nuclear spin dynamics in individual GaAs quantum dots grown by droplet epitaxy

    Full text link
    We report optical orientation experiments in individual, strain free GaAs quantum dots in AlGaAs grown by droplet epitaxy. Circularly polarized optical excitation yields strong circular polarization of the resulting photoluminescence at 4K. Optical injection of spin polarized electrons into a dot gives rise to dynamical nuclear polarization that considerably changes the exciton Zeeman splitting (Overhauser shift). We show that the created nuclear polarization is bistable and present a direct measurement of the build-up time of the nuclear polarization in a single GaAs dot in the order of one second.Comment: 7 pages, 3 figure

    Photoluminescence Study of Low Thermal Budget III–V Nanostructures on Silicon by Droplet Epitaxy

    Get PDF
    We present of a detailed photoluminescence characterization of high efficiency GaAs/AlGaAs quantum nanostructures grown on silicon substrates. The whole process of formation of the GaAs/AlGaAs active layer was realized via droplet epitaxy and migration enhanced epitaxy maintaining the growth temperature ≤350°C, thus resulting in a low thermal budget procedure compatible with back-end integration of the fabricated materials on integrated circuits

    Growth Interruption Effect on the Fabrication of GaAs Concentric Multiple Rings by Droplet Epitaxy

    Get PDF
    We present the molecular beam epitaxy fabrication and optical properties of complex GaAs nanostructures by droplet epitaxy: concentric triple quantum rings. A significant difference was found between the volumes of the original droplets and the final GaAs structures. By means of atomic force microscopy and photoluminescence spectroscopy, we found that a thin GaAs quantum well-like layer is developed all over the substrate during the growth interruption times, caused by the migration of Ga in a low As background

    Dysregulated T cell expression of TIM3 in multiple sclerosis

    Get PDF
    T cell immunoglobulin- and mucin domain–containing molecule (TIM)3 is a T helper cell (Th)1–associated cell surface molecule that regulates Th1 responses and promotes tolerance in mice, but its expression and function in human T cells is unknown. We generated 104 T cell clones from the cerebrospinal fluid (CSF) of six patients with multiple sclerosis (MS) (n = 72) and four control subjects (n = 32) and assessed their cytokine profiles and expression levels of TIM3 and related molecules. MS CSF clones secreted higher amounts of interferon (IFN)-γ than did those from control subjects, but paradoxically expressed lower levels of TIM3 and T-bet. Interleukin 12–mediated polarization of CSF clones induced substantially higher amounts of IFN-γ secretion but lower levels of TIM3 in MS clones relative to control clones, demonstrating that TIM3 expression is dysregulated in MS CSF clones. Reduced levels of TIM3 on MS CSF clones correlated with resistance to tolerance induced by costimulatory blockade. Finally, reduction of TIM3 on ex vivo CD4+ T cells using small interfering (si)RNA enhanced proliferation and IFN-γ secretion, directly demonstrating that TIM3 expression on human T cells regulates proliferation and IFN-γ secretion. Failure to up-regulate T cell expression of TIM3 in inflammatory sites may represent a novel, intrinsic defect that contributes to the pathogenesis of MS and other human autoimmune diseases

    Structure analysis of the Ga-stabilized GaAs(001)-c(8x2) surface at high temperatures

    Full text link
    Structure of the Ga-stabilized GaAs(001)-c(8x2) surface has been studied using rocking-curve analysis of reflection high-energy electron diffraction (RHEED). The c(8x2) structure emerges at temperatures higher than 600C, but is unstable with respect to the change to the (2x6)/(3x6) structure at lower temperatures. Our RHEED rocking-curve analysis at high temperatures revealed that the c(8x2) surface has the structure which is basically the same as that recently proposed by Kumpf et al. [Phys. Rev. Lett. 86, 3586 (2001)]. We found that the surface atomic configurations are locally fluctuated at high temperatures without disturbing the c(8x2) periodicity.Comment: 14 pages, 4 figures, 1 tabl
    • …
    corecore