63 research outputs found
Adsorption properties and third sound propagation in superfluid He films on carbon nanotubes
We consider the adsorption properties of superfluid He films on carbon
nanotubes. One major factor in the adsorption is the surface tension force
arising from the very small diameter of the nanotubes. Calculations show that
surface tension keeps the film thickness on the tubes very thin even when the
helium vapor is increased to the saturated pressure. The weakened Van der Waals
force due to the cylindrical geometry also contributes to this. Both of these
effects act to lower the predicted velocity of third sound propagation along
the tubes. It does not appear that superfluidity will be possible on
single-walled nanotubes of diameter about one nm, since the film thickness is
less than 3 atomic layers even at saturation. Superfluidity is possible on
larger-diameter nanotube bundles and multi-walled nanotubes, however. We have
observed third sound signals on nanotube bundles of average diameter 5 nm which
are sprayed onto a Plexiglass surface, forming a network of tubes.Comment: 4 pages, accepted for Journal of Physics: Conference Series
(Proceedings of LT25
Amplitude dynamics of charge density wave in LaTe: theoretical description of pump-probe experiments
We formulate a dynamical model to describe a photo-induced charge density
wave (CDW) quench transition and apply it to recent multi-probe experiments on
LaTe [A. Zong et al., Nat. Phys. 15, 27 (2019)]. Our approach relies on
coupled time-dependent Ginzburg-Landau equations tracking two order parameters
that represent the modulations of the electronic density and the ionic
positions. We aim at describing the amplitude of the order parameters under the
assumption that they are homogeneous in space. This description is supplemented
by a three-temperature model, which treats separately the electronic
temperature, temperature of the lattice phonons with stronger couplings to the
electronic subsystem, and temperature of all other phonons. The broad scope of
available data for LaTe and similar materials as well as the synergy
between different time-resolved spectroscopies allow us to extract model
parameters. The resulting calculations are in good agreement with ultra-fast
electron diffraction experiments, reproducing qualitative and quantitative
features of the CDW amplitude evolution during the initial few picoseconds
after photoexcitation.Comment: 21 pages, 14 figures; this version is almost identical to the
published version; comparing to the earlier arXiv submission, current version
contains a new figure (Fig.10), and a broader discussion of theoretical
results and approximation
Structural contributions to the pressure-tuned charge-density-wave to superconductor transition in ZrTe3: Raman scattering studies
Superconductivity evolves as functions of pressure or doping from
charge-ordered phases in a variety of strongly correlated systems, suggesting
that there may be universal characteristics associated with the competition
between superconductivity and charge order in these materials. We present an
inelastic light (Raman) scattering study of the structural changes that precede
the pressure-tuned charge-density-wave (CDW) to superconductor transition in
one such system, ZrTe3. In certain phonon bands, we observe dramatic linewidth
reductions that accompany CDW formation, indicating that these phonons couple
strongly to the electronic degrees of freedom associated with the CDW. The same
phonon bands, which represent internal vibrations of ZrTe3 prismatic chains,
are suppressed at pressures above ~10 kbar, indicating a loss of long-range
order within the chains, specifically amongst intrachain Zr-Te bonds. These
results suggest a distinct structural mechanism for the observed
pressure-induced suppression of CDW formation and provide insights into the
origin of pressure-induced superconductivity in ZrTe3.Comment: 6 pages, 5 figure
Measurement of the dynamic charge response of materials using low-energy, momentum-resolved electron energy-loss spectroscopy (M-EELS)
One of the most fundamental properties of an interacting electron system is
its frequency- and wave-vector-dependent density response function, . The imaginary part, , defines the
fundamental bosonic charge excitations of the system, exhibiting peaks wherever
collective modes are present. quantifies the electronic compressibility
of a material, its response to external fields, its ability to screen charge,
and its tendency to form charge density waves. Unfortunately, there has never
been a fully momentum-resolved means to measure at the
meV energy scale relevant to modern elecronic materials. Here, we demonstrate a
way to measure with quantitative momentum resolution by applying
alignment techniques from x-ray and neutron scattering to surface
high-resolution electron energy-loss spectroscopy (HR-EELS). This approach,
which we refer to here as "M-EELS," allows direct measurement of with meV resolution while controlling the momentum with an accuracy
better than a percent of a typical Brillouin zone. We apply this technique to
finite-q excitations in the optimally-doped high temperature superconductor,
BiSrCaCuO (Bi2212), which exhibits several phonons
potentially relevant to dispersion anomalies observed in ARPES and STM
experiments. Our study defines a path to studying the long-sought collective
charge modes in quantum materials at the meV scale and with full momentum
control.Comment: 26 pages, 10 sections, 7 figures, and an appendi
Surface collective modes in the topological insulators BiSe and BiSbTeSe
We used low-energy, momentum-resolved inelastic electron scattering to study
surface collective modes of the three-dimensional topological insulators
BiSe and BiSbTeSe. Our goal was to
identify the "spin plasmon" predicted by Raghu and co-workers [S. Raghu, et
al., Phys. Rev. Lett. 104, 116401 (2010)]. Instead, we found that the primary
collective mode is a surface plasmon arising from the bulk, free carrers in
these materials. This excitation dominates the spectral weight in the bosonic
function of the surface, , at THz energy scales, and
is the most likely origin of a quasiparticle dispersion kink observed in
previous photoemission experiments. Our study suggests that the spin plasmon
may mix with this other surface mode, calling for a more nuanced understanding
of optical experiments in which the spin plasmon is reported to play a role.Comment: 5 pages, 4 figure
Recommended from our members
Observation of a Charge Density Wave Incommensuration Near the Superconducting Dome in Cu_{x}TiSe_{2}.
X-ray diffraction was employed to study the evolution of the charge density wave (CDW) in Cu_{x}TiSe_{2} as a function of copper intercalation in order to clarify the relationship between the CDW and superconductivity. The results show a CDW incommensuration arising at an intercalation value coincident with the onset of superconductivity at around x=0.055(5). Additionally, it was found that the charge density wave persists to higher intercalant concentrations than previously assumed, demonstrating that the CDW does not terminate inside the superconducting dome. A charge density wave peak was observed in samples up to x=0.091(6), the highest copper concentration examined in this study. The phase diagram established in this work suggests that charge density wave incommensuration may play a role in the formation of the superconducting state
Anomalous density fluctuations in a strange metal.
A central mystery in high-temperature superconductivity is the origin of the so-called strange metal (i.e., the anomalous conductor from which superconductivity emerges at low temperature). Measuring the dynamic charge response of the copper oxides, [Formula: see text], would directly reveal the collective properties of the strange metal, but it has never been possible to measure this quantity with millielectronvolt resolution. Here, we present a measurement of [Formula: see text] for a cuprate, optimally doped Bi2.1Sr1.9CaCu2O8+x (Tc = 91 K), using momentum-resolved inelastic electron scattering. In the medium energy range 0.1-2 eV relevant to the strange metal, the spectra are dominated by a featureless, temperature- and momentum-independent continuum persisting to the electronvolt energy scale. This continuum displays a simple power-law form, exhibiting q2 behavior at low energy and q2/ω2 behavior at high energy. Measurements of an overdoped crystal (Tc = 50 K) showed the emergence of a gap-like feature at low temperature, indicating deviation from power law form outside the strange-metal regime. Our study suggests the strange metal exhibits a new type of charge dynamics in which excitations are local to such a degree that space and time axes are decoupled
Influence of Ti doping on the incommensurate charge density wave in 1T-TaS2
We report temperature-dependent transport and x-ray diffraction measurements
of the influence of Ti hole doping on the charge density wave (CDW) in
1T-Ta(1-x)Ti(x)S(2). Confirming past studies, we find that even trace
impurities eliminate the low-temperature commensurate (C) phase in this system.
Surprisingly, the magnitude of the in-plane component of the CDW wave vector in
the nearly commensurate (NC) phase does not change significantly with Ti
concentration, as might be expected from a changing Fermi surface volume.
Instead, the angle of the CDW in the basal plane rotates, from 11.9 deg at x=0
to 16.4 deg at x=0.12. Ti substitution also leads to an extended region of
coexistence between incommensurate (IC) and NC phases, indicating heterogeneous
nucleation near the transition. Finally, we explain a resistive anomaly
originally observed by DiSalvo [F. J. DiSalvo, et al., Phys. Rev. B {\bf 12},
2220 (1975)] as arising from pinning of the CDW on the crystal lattice. Our
study highlights the importance of commensuration effects in the NC phase,
particularly at x ~ 0.08
Evidence for topological defects in a photoinduced phase transition
Upon excitation with an intense ultrafast laser pulse, a symmetry-broken
ground state can undergo a non-equilibrium phase transition through pathways
dissimilar from those in thermal equilibrium. Determining the mechanism
underlying these photo-induced phase transitions (PIPTs) has been a
long-standing issue in the study of condensed matter systems. To this end, we
investigate the light-induced melting of a unidirectional charge density wave
(CDW) material, LaTe. Using a suite of time-resolved probes, we
independently track the amplitude and phase dynamics of the CDW. We find that a
quick (1ps) recovery of the CDW amplitude is followed by a slower
reestablishment of phase coherence. This longer timescale is dictated by the
presence of topological defects: long-range order (LRO) is inhibited and is
only restored when the defects annihilate. Our results provide a framework for
understanding other PIPTs by identifying the generation of defects as a
governing mechanism
- …