18 research outputs found

    Analysis of CLAS data on double charge pion electroproduction

    Full text link
    Recent developments in phenomenological analysis of the CLAS data on 2π\pi electroproduction are presented. The contributions from isobar channels and P11(1440)P_{11}(1440), D13(1520)D_{13}(1520) electrocouplings at Q2Q^{2} from 0.25 to 0.6 GeV2^2 were determined from the analysis of comprehensive data on differential and fully integrated 2π\pi cross sections. Experiment Numbers: E94-005 Group: Hall BComment: Paper compiled for NSTAR2007 meetin

    Vector- and Pseudoscalar-baryon coupled channel systems

    Full text link
    In this manuscript, I will report the details of our recent work on the vector meson-baryon (VB) interaction, which we studied with the motivation of finding dynamical generation of resonances in the corresponding systems. We started our study by building a formalism based on the hidden local symmetry and calculating the leading order contributions to the scattering equations by summing the diagrams with: (a) a vector meson exchange in the t-channel (b) an octet baryon exchange in the s-, u-channels and (c) a contact interaction arising from the part of the vector meson-baryon Lagrangian which is related to the anomalous magnetic moment of the baryons. We find the contribution from all these sources, except the s-channel, to be important. The amplitudes obtained by solving the coupled channel Bethe-Salpeter equations for the systems with total strangeness zero, show generation of one isospin 3/2, spin 1/2 resonance and three isospin 1/2 resonances: two with spin 3/2 and one with spin 1/2. We identify these resonances with Δ\Delta (1900) S31S_{31}, NN^*(2080) D13D_{13}, NN^*(1700) D13D_{13}, and NN^*(2090) S11S_{11}, respectively. We have further extended our study by including pseudoscalar meson-baryon (PB) as the coupled channels of VB systems. For this, we obtain the PB \rightarrow VB amplitudes by using the Kroll-Ruddermann term where, considering the vector meson dominance phenomena, the photon is replaced by a vector meson. The calculations done within this formalism reveal a very strong coupling of the VB channels to the low-lying resonances like Λ\Lambda(1405) and Λ\Lambda(1670), which can have important implications on certain reactions producing them. In addition to this, we find that the effect of coupling the higher mass states to the lighter channels is not restricted to increasing the width of those states, it can be far more strong.Comment: Proceedings of the "DAE-BRNS Workshop on Hadron Physics" held in Mumbai, India during October 31-November 04, 201

    Proton strangeness form factors in (4,1) clustering configurations

    Full text link
    We reexamine a recent result within a nonrelativistic constituent quark model (NRCQM) which maintains that the uuds\bar s component in the proton has its uuds subsystem in P state, with its \bar s in S state (configuration I). When the result are corrected, contrary to the previous result, we find that all the empirical signs of the form factors data can be described by the lowest-lying uuds\bar s configuration with \bar s in P state that has its uuds subsystem in SS state (configuration II). Further, it is also found that the removal of the center-of-mass (CM) motion of the clusters will enhance the contributions of the transition current considerably. We also show that a reasonable description of the existing form factors data can be obtained with a very small probability P_{s\bar s}=0.025% for the uuds\bar s component. We further see that the agreement of our prediction with the data for G_A^s at low-q^2 region can be markedly improved by a small admixture of configuration I. It is also found that by not removing CM motion, P_{s\bar s} would be overestimated by about a factor of four in the case when transition dominates over direct currents. Then, we also study the consequence of a recent estimate reached from analyzing the existing data on quark distributions that P_{s\bar s} lies between 2.4-2.9% which would lead to a large size for the five-quark (5q) system, as well as a small bump in both G^s_E+\eta G^s_M and G^s_E in the region of q^2 =< 0.1 GeV^2.Comment: Prepared for The Fifth Asia-Pacific Conference on Few-Body Problems in Physics 2011 in Seoul, South Korea, 22-26 August 201

    Inter-planar coupling dependent magnetoresistivity in high purity layered metals

    Get PDF
    The magnetic field-induced changes in the conductivity of metals are the subject of intense interest, both for revealing new phenomena and as a valuable tool for determining their Fermi surface. Here, we report a hitherto unobserved magnetoresistive effect in ultra-clean layered metals, namely a negative longitudinal magnetoresistance that is capable of overcoming their very pronounced orbital one. This effect is correlated with the inter-layer coupling disappearing for fields applied along the so-called Yamaji angles where the inter-layer coupling vanishes. Therefore, it is intrinsically associated with the Fermi points in the field-induced quasi-one-dimensional electronic dispersion, implying that it results from the axial anomaly among these Fermi points. In its original formulation, the anomaly is predicted to violate separate number conservation laws for left- and right-handed chiral- (e.g. Weyl) fermions. Its observation in PdCoO2_2, PtCoO2_2 and Sr2_2RuO4_4 suggests that the anomaly affects the transport of clean conductors, particularly near the quantum limit.Comment: Nature Communications (in press

    Electromagnetic Meson Production in the Nucleon Resonance Region

    Full text link
    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed.Comment: 75 pages, 42 figure

    Magnetic Frustration Driven by Itinerancy in Spinel CoV2O4

    Get PDF
    Localized spins and itinerant electrons rarely coexist in geometrically-frustrated spinel lattices. They exhibit a complex interplay between localized spins and itinerant electrons. In this paper, we study the origin of the unusual spin structure of the spinel CoV2O4, which stands at the crossover from insulating to itinerant behavior using the first principle calculation and neutron diffraction measurement. In contrast to the expected paramagnetism, localized spins supported by enhanced exchange couplings are frustrated by the effects of delocalized electrons. This frustration produces a non-collinear spin state even without orbital orderings and may be responsible for macroscopic spin-glass behavior. Competing phases can be uncovered by external perturbations such as pressure or magnetic field, which enhances the frustration
    corecore