61 research outputs found

    Active Latitude Oscillations Observed on the Sun

    Full text link
    We investigate periodicities in mean heliographic latitudes of sunspot groups, called active latitudes, for the last six complete solar cycles (1945-2008). For this purpose, the Multi Taper Method and Morlet Wavelet analysis methods were used. We found the following: 1) Solar rotation periodicities (26-38 days) are present in active latitudes of both hemispheres for all the investigated cycles (18 to 23). 2) Both in the northern and southern hemispheres, active latitudes drifted towards the equator starting from the beginning to the end of each cycle by following an oscillating path. These motions are well described by a second order polynomial. 3) There are no meaningful periods between 55 and about 300 days in either hemisphere for all cycles. 4) A 300 to 370 day periodicity appears in both hemispheres for Cycle 23, in the northern hemisphere for Cycle 20, and in the southern hemisphere for Cycle 18.Comment: Accepted for publication by Solar Physic

    Temporal and Periodic Variations of Sunspot Counts in Flaring and Non-flaring Active Regions

    Full text link
    We analyzed temporal and periodic behavior of sunspot counts (SSCs) in flaring (C, M, or X class flares), and non-flaring active regions (ARs) for the almost two solar cycles (1996 through 2016). Our main findings are as follows: i) The temporal variation of monthly means of daily total SSCs in flaring and non-flaring ARs are different and these differences are also varying from cycle to cycle; temporal profile of non-flaring ARs are wider than the flaring ones during the solar cycle 23, while they are almost the same during the current cycle 24. The second peak (second maximum) of flaring ARs are strongly dominate during current cycle 24, while this difference is not such a remarkable during cycle 23. The amplitude of SSCs in the non-flaring ARs are comparable during the first and second peaks (maxima) of the current solar cycle, while the first peak is almost not existent in case of the flaring ARs. ii) Periodic variations observed in SSCs of flaring and non-flaring ARs are quite different in both MTM spectrum and wavelet scalograms and these variations are also different from one cycle to another; the largest detected period in the flaring ARs is 113 days, while there are much higher periodicities (327, 312, and 256 days) in non-flaring ARs. There are no meaningful periodicities in MTM spectrum of flaring ARs exceeding 45 days during solar cycle 24, while a 113 days periodicity detected from flaring ARs of solar cycle 23. For the non-flaring ARs the largest period is 72 days during solar cycle 24, while the largest period is 327 days during current cycle.Comment: Submitted to Solar Physics, 17 pages, 5 figure

    Maximum Coronal Mass Ejection Speed as an Indicator of Solar and Geomagnetic Activities

    Full text link
    We investigate the relationship between the monthly averaged maximal speeds of coronal mass ejections (CMEs), international sunspot number (ISSN), and the geomagnetic Dst and Ap indices covering the 1996-2008 time interval (solar cycle 23). Our new findings are as follows. (1) There is a noteworthy relationship between monthly averaged maximum CME speeds and sunspot numbers, Ap and Dst indices. Various peculiarities in the monthly Dst index are correlated better with the fine structures in the CME speed profile than that in the ISSN data. (2) Unlike the sunspot numbers, the CME speed index does not exhibit a double peak maximum. Instead, the CME speed profile peaks during the declining phase of solar cycle 23. Similar to the Ap index, both CME speed and the Dst indices lag behind the sunspot numbers by several months. (3) The CME number shows a double peak similar to that seen in the sunspot numbers. The CME occurrence rate remained very high even near the minimum of the solar cycle 23, when both the sunspot number and the CME average maximum speed were reaching their minimum values. (4) A well-defined peak of the Ap index between 2002 May and 2004 August was co-temporal with the excess of the mid-latitude coronal holes during solar cycle 23. The above findings suggest that the CME speed index may be a useful indicator of both solar and geomagnetic activities. It may have advantages over the sunspot numbers, because it better reflects the intensity of Earth-directed solar eruptions
    • …
    corecore