1,738 research outputs found
Polyyne Ring Nucleus Growth Model for Single-Layer Carbon Nanotubes
We propose, based on recent experimental results, a polyyne ring nucleus (PRN) growth model for the synthesis of single-layer nanotubes (SLN's). The PRN model assumes that (i) the critical nuclei are the planar carbon polyyne rings that are observed to be most stable for sizes in the range C10 to C40; (ii) ComCn clusters (possibly charged) play the role of a catalyst by serving to add C2 or other gas phase species into the growing tube; (iii) promoters such as S, Bi, and Pb serve to modify the rates for these processes by stabilizing the ring structure. We suggest experiments to test and amplify this PRN model, including a flow tube arrangement that might be useful for synthesizing more uniform SLN's
How to Kneel on the Earth
How to Kneel on the Earth by Michelle A. Kian
Classifying multispectral data by neural networks
Several energy functions for synthesizing neural networks are tested on 2-D synthetic data and on Landsat-4 Thematic Mapper data. These new energy functions, designed specifically for minimizing misclassification error, in some cases yield significant improvements in classification accuracy over the standard least mean squares energy function. In addition to operating on networks with one output unit per class, a new energy function is tested for binary encoded outputs, which result in smaller network sizes. The Thematic Mapper data (four bands were used) is classified on a single pixel basis, to provide a starting benchmark against which further improvements will be measured. Improvements are underway to make use of both subpixel and superpixel (i.e. contextual or neighborhood) information in tile processing. For single pixel classification, the best neural network result is 78.7 percent, compared with 71.7 percent for a classical nearest neighbor classifier. The 78.7 percent result also improves on several earlier neural network results on this data
Capture-zone scaling in island nucleation: phenomenological theory of an example of universal fluctuation behavior
In studies of island nucleation and growth, the distribution of capture
zones, essentially proximity cells, can give more insight than island-size
distributions. In contrast to the complicated expressions, ad hoc or derived
from rate equations, usually used, we find the capture-zone distribution can be
described by a simple expression generalizing the Wigner surmise from random
matrix theory that accounts for the distribution of spacings in a host of
fluctuation phenomena. Furthermore, its single adjustable parameter can be
simply related to the critical nucleus of growth models and the substrate
dimensionality. We compare with extensive published kinetic Monte Carlo data
and limited experimental data. A phenomenological theory sheds light on the
result.Comment: 5 pages, 4 figures, originally submitted to Phys. Rev. Lett. on Dec.
15, 2006; revised version v2 tightens and focuses the presentation,
emphasizes the importance of universal features of fluctuations, corrects an
error for d=1, replaces 2 of the figure
Cell size distribution in a random tessellation of space governed by the Kolmogorov-Johnson-Mehl-Avrami model: Grain size distribution in crystallization
The space subdivision in cells resulting from a process of random nucleation
and growth is a subject of interest in many scientific fields. In this paper,
we deduce the expected value and variance of these distributions while assuming
that the space subdivision process is in accordance with the premises of the
Kolmogorov-Johnson-Mehl-Avrami model. We have not imposed restrictions on the
time dependency of nucleation and growth rates. We have also developed an
approximate analytical cell size probability density function. Finally, we have
applied our approach to the distributions resulting from solid phase
crystallization under isochronal heating conditions
Spectral signatures of photosynthesis II: coevolution with other stars and the atmosphere on extrasolar worlds
As photosynthesis on Earth produces the primary signatures of life that can
be detected astronomically at the global scale, a strong focus of the search
for extrasolar life will be photosynthesis, particularly photosynthesis that
has evolved with a different parent star. We take planetary atmospheric
compositions simulated by Segura, et al. (2003, 2005) for Earth-like planets
around observed F2V and K2V stars, modeled M1V and M5V stars, and around the
active M4.5V star AD Leo; our scenarios use Earth's atmospheric composition as
well as very low O2 content in case anoxygenic photosynthesis dominates. We
calculate the incident spectral photon flux densities at the surface of the
planet and under water. We identify bands of available photosynthetically
relevant radiation and find that photosynthetic pigments on planets around F2V
stars may peak in absorbance in the blue, K2V in the red-orange, and M stars in
the NIR, in bands at 0.93-1.1 microns, 1.1-1.4 microns, 1.5-1.8 microns, and
1.8-2.5 microns. In addition, we calculate wavelength restrictions for
underwater organisms and depths of water at which they would be protected from
UV flares in the early life of M stars. We estimate the potential productivity
for both surface and underwater photosynthesis, for both oxygenic and
anoxygenic photosynthesis, and for hypothetical photosynthesis in which longer
wavelength, multi-photosystem series are used.Comment: 59 pages, 4 figures, 4 tables, forthcoming in Astrobiology ~March
200
An Improved Web Design to Support Online Investment Decisions
The rise of the Internet opens up new possibilities and creates new challenges for investors. The possibilities include ease of use, cheaper trading costs, and greatly improved access to information. The challenges include information overload and a temptation to overtrade. The present paper discusses how brokerage firms can improve their web site designs in order to meet these challenges and opportunities and to better facilitate the needs of individual investors. Specifically, the paper discusses how an objectoriented information representation system can be used to enable both investor-specific information, such as risktolerance level, investment time horizon, and tax status, and more general information from the financial markets themselves, such as company P/E levels, to be integrated into a consistent web presentation that will facilitate the investor’s making more intelligent investment decisions. Such an information representation system would be structured hierarchically, with the investor-specific information at the top of the hierarchy, driving the application of market-level, then industry-level, and, at the bottom of the hierarchy, company-specific information. Finally, the paper discusses the feasibility of implementing such a system and some of the promises and pitfalls that may arise from its implementation
- …