6 research outputs found
Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment
The continuous presence of toxic elements in the aquatic environments around mine tailings occurs due to bioleaching or chemical extraction promoted by the mining operations. Biogenic passivation treatment of tailings dams can be a new environment-friendly technique to inhibit the solubility of heavy metals. In spite of current bioleaching researches, we tried to minimize the mobility of the trace elements in the laboratory scale through the formation of a passivation layer in the presence of a mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The X-ray diffraction (XRD) and scanning electron microscope (SEM) represented the jarosite generation as an inhibitory layer on the mineral surfaces of the tested materials. More detailed observations on electron probe micro-analyzer (EPMA) showed the co-precipitation of metals with the passivation layer. Thereby, the passivation layer demonstrates potential in elements immobilization which, in turn, can be optimized in the natural systems. Our working hypothesis was to exploit and optimize the formation of the passivation layer to maximize the immobilization of heavy metals (e.g., Cu, Cr). The optimization process of bioleaching experiments using indigenous bacteria caused a reduced solubility for Cu (from around 20% to 4.5%) and Cr (from around 30% to 10.6%) and the formation of 6.5 gr passivation layer. The analyses finally represented the high efficiency of the passivation technique to minimize metals bioleaching in comparison to earlier studies
Effect of biogenic jarosite on the bio-immobilization of toxic elements from sulfide tailings
The discharge of toxic elements from tailings soils in the aquatic environments occurs chiefly in the presence of indigenous bacteria. The biotic components may interact in the opposite direction, leading to the formation of a passivation layer, which can inhibit the solubility of the elements. In this work, the influence of jarosite on the bio-immobilization of toxic elements was studied by native bacteria. In batch experiments, the bio-immobilization of heavy metals by an inhibitory layer was examined in the different aquatic media using pure cultures of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. A variety of analyses also investigated the mechanisms of metals bio-immobilization. Among different tests, the highest metal solubility yielded 99% Mn, 91% Cr, 95% Fe, and 78% Cu using A. ferrooxidans in 9KFe medium after ten days. After 22 days, these percentages decreased down to 30% Mn and about 20% Cr, Fe, and Cu, likely due to metal immobilization by biogenic jarosite. The formation of jarosite was confirmed by an electron probe micro-analyzer (EPMA), X-ray diffraction (XRD), and scanning electron microscope (SEM). The mechanisms of metal bio-immobilization by biogenic jarosite from tailings soil confirmed three main steps: 1) the dissolution of metal sulfides in the presence of Acidithiobacillus bacteria; 2) the nucleation of jarosite on the surface of sulfide minerals; 3) the co-precipitation of dissolved elements with jarosite during the bio-immobilization process, demonstrated by a structural study for jarosite. Covering the surface of soils by the jarosite provided a stable compound in the acidic environment of mine-waste
Utilization of a Novel Chitosan/Clay/Biochar Nanobiocomposite for Immobilization of Heavy Metals in Acid Soil Environment
An organic–inorganic composite of chitosan, nanoclay, and biochar (named as MTCB) was chosen to develop a bionanocomposite to simultaneously immobilize Cu, Pb, and Zn metal ions within the contaminated soil and water environments. The composite material was structurally and chemically characterized with the XRD, TEM, SEM, BET, and FT-IR techniques. XRD and TEM results revealed that a mixed exfoliated/intercalated morphology was formed upon addition of small amounts of nanoclay (5% by weight). Batch adsorption experiments showed that the adsorption capacity of MTCB for Cu2+, Pb2+, and Zn2+ were much higher than that of the pristine biochar sample (121.5, 336, and 134.6 mg g−1 for Cu2+, Pb2+, and Zn2+, respectively). The adsorption isotherm for Cu2+ and Zn2+ fitted satisfactorily to a Freundlich model while the isotherm of Pb2+ was best represented by a Temkin model. That the adsorption capacity increased with increasing temperature is indicative of the endothermic nature of the adsorption process. According to the FTIR analysis, the main mechanism involved in immobilization of metals is binding with –NH2 groups. Results from this study indicated that modification of biochar by chitosan/clay nanocomposite enhances its potential capacity for immobilization of heavy metals, rendering the bionanocomposite into an efficient heavy metal sorbent in mine-impacted acidic waters and soils