1,399 research outputs found

    Herman's Theory Revisited

    Full text link
    We prove that a C2+αC^{2+\alpha}-smooth orientation-preserving circle diffeomorphism with rotation number in Diophantine class DδD_\delta, 0<δ<α10<\delta<\alpha\le1, is C1+αδC^{1+\alpha-\delta}-smoothly conjugate to a rigid rotation. We also derive the most precise version of Denjoy's inequality for such diffeomorphisms.Comment: 10 page

    On the Validity of the 0-1 Test for Chaos

    Full text link
    In this paper, we present a theoretical justification of the 0-1 test for chaos. In particular, we show that with probability one, the test yields 0 for periodic and quasiperiodic dynamics, and 1 for sufficiently chaotic dynamics

    Fundamental Limits on the Speed of Evolution of Quantum States

    Full text link
    This paper reports on some new inequalities of Margolus-Levitin-Mandelstam-Tamm-type involving the speed of quantum evolution between two orthogonal pure states. The clear determinant of the qualitative behavior of this time scale is the statistics of the energy spectrum. An often-overlooked correspondence between the real-time behavior of a quantum system and the statistical mechanics of a transformed (imaginary-time) thermodynamic system appears promising as a source of qualitative insights into the quantum dynamics.Comment: 6 pages, 1 eps figur

    The averaged null energy condition and difference inequalities in quantum field theory

    Full text link
    Recently, Larry Ford and Tom Roman have discovered that in a flat cylindrical space, although the stress-energy tensor itself fails to satisfy the averaged null energy condition (ANEC) along the (non-achronal) null geodesics, when the ``Casimir-vacuum" contribution is subtracted from the stress-energy the resulting tensor does satisfy the ANEC inequality. Ford and Roman name this class of constraints on the quantum stress-energy tensor ``difference inequalities." Here I give a proof of the difference inequality for a minimally coupled massless scalar field in an arbitrary two-dimensional spacetime, using the same techniques as those we relied on to prove ANEC in an earlier paper with Robert Wald. I begin with an overview of averaged energy conditions in quantum field theory.Comment: 20 page

    Convergence and Stability of the Inverse Scattering Series for Diffuse Waves

    Full text link
    We analyze the inverse scattering series for diffuse waves in random media. In previous work the inverse series was used to develop fast, direct image reconstruction algorithms in optical tomography. Here we characterize the convergence, stability and approximation error of the serie

    The accuracy of merging approximation in generalized St. Petersburg games

    Full text link
    Merging asymptotic expansions of arbitrary length are established for the distribution functions and for the probabilities of suitably centered and normalized cumulative winnings in a full sequence of generalized St. Petersburg games, extending the short expansions due to Cs\"org\H{o}, S., Merging asymptotic expansions in generalized St. Petersburg games, \textit{Acta Sci. Math. (Szeged)} \textbf{73} 297--331, 2007. These expansions are given in terms of suitably chosen members from the classes of subsequential semistable infinitely divisible asymptotic distribution functions and certain derivatives of these functions. The length of the expansion depends upon the tail parameter. Both uniform and nonuniform bounds are presented.Comment: 30 pages long version (to appear in Journal of Theoretical Probability); some corrected typo

    Rigidity and Non-recurrence along Sequences

    Full text link
    Two properties of a dynamical system, rigidity and non-recurrence, are examined in detail. The ultimate aim is to characterize the sequences along which these properties do or do not occur for different classes of transformations. The main focus in this article is to characterize explicitly the structural properties of sequences which can be rigidity sequences or non-recurrent sequences for some weakly mixing dynamical system. For ergodic transformations generally and for weakly mixing transformations in particular there are both parallels and distinctions between the class of rigid sequences and the class of non-recurrent sequences. A variety of classes of sequences with various properties are considered showing the complicated and rich structure of rigid and non-recurrent sequences

    A quantitative central limit theorem for linear statistics of random matrix eigenvalues

    Full text link
    It is known that the fluctuations of suitable linear statistics of Haar distributed elements of the compact classical groups satisfy a central limit theorem. We show that if the corresponding test functions are sufficiently smooth, a rate of convergence of order almost 1/n1/n can be obtained using a quantitative multivariate CLT for traces of powers that was recently proven using Stein's method of exchangeable pairs.Comment: Title modified; main result stated under slightly weaker conditions; accepted for publication in the Journal of Theoretical Probabilit

    On Local Behavior of Holomorphic Functions Along Complex Submanifolds of C^N

    Full text link
    In this paper we establish some general results on local behavior of holomorphic functions along complex submanifolds of \Co^{N}. As a corollary, we present multi-dimensional generalizations of an important result of Coman and Poletsky on Bernstein type inequalities on transcendental curves in \Co^{2}.Comment: minor changes in the formulation and the proof of Lemma 8.
    corecore