284 research outputs found

    SPATIAL DISTRIBUTION REQUIREMENTS OF REFERENCE GROUND CONTROL FOR ESTIMATING LIDAR/INS BORESIGHT MISALIGNMENT

    Get PDF
    LiDAR (Light Detection and Ranging, also known as Airborne Laser Scanning – ALS) is a powerful technology for obtaining detailed and accurate terrain models as well as precise description of natural and man-made objects from airborne platforms, with excellent vertical accuracy. High performance integrated GPS/INS systems provide the necessary navigation information for the LiDAR data acquisition platform, and therefore, the proper calibration of the entire Mobile Mapping System (MMS) including individual and inter-sensor calibration, is essential to determine the accurate spatial  relationship of the involved sensors. In particular, the spatial relationship between the INS body frame and the LiDAR body frame is of high importance as it could be the largest source of systematic errors in airborne MMS. The feasibility of using urban areas, especially buildings, for boresight misalignment is still investigated. In this research, regularly or randomly distributed, photogrammetrically restituted buildings are used as reference surfaces, to investigate the impact of  the spatial distribution and the distance between the necessary ‘building-positions’ on boresight’s misalignment parameter estimation. The data used for performance evaluation included LiDAR point clouds Pothou, A. et al  777 and aerial images captured in a test area in London, Ohio, USA. The city includes mainly residential houses and a few bigger buildings

    Hypertrophic pulmonary osteoarthropathy secondary to bronchial adenocarcinoma and coexisting pulmonary tuberculosis: a case report

    Get PDF
    A 44-year-old man presented with painful swelling of wrists and ankles, severe pain at both tibiae, clubbing of fingers and toes and arthritis in wrist and ankle joints. The chest roentgenogram showed consolidation of the right lower lobe, whereas plain roentgenograms revealed solid periosteal reaction at both tibiae. CT and bronchoscopy confirmed the presence of adenocarcinoma of the right lower lobe. Moreover, mycobacterium of tuberculosis was isolated by culture of the patient's sputum

    Feasibility and safety of high-dose adenosine perfusion cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Adenosine is the most widely used vasodilator stress agent for Cardiovascular Magnetic Resonance (CMR) perfusion studies. With the standard dose of 140 mcg/kg/min some patients fail to demonstrate characteristic haemodynamic changes: a significant increase in heart rate (HR) and mild decrease in systolic blood pressure (SBP). Whether an increase in the rate of adenosine infusion would improve peripheral and, likely, coronary vasodilatation in those patients is unknown. The aim of the present study was to assess the tolerance and safety of a high-dose adenosine protocol in patients with inadequate haemodynamic response to the standard adenosine protocol when undergoing CMR perfusion imaging.</p> <p>Methods</p> <p>98 consecutive patients with known or suspected coronary artery disease (CAD) underwent CMR perfusion imaging at 1.5 Tesla. Subjects were screened for contraindications to adenosine, and an electrocardiogram was performed prior to the scan. All patients initially received the standard adenosine protocol (140 mcg/kg/min for at least 3 minutes). If the haemodynamic response was inadequate (HR increase < 10 bpm or SBP decrease < 10 mmHg) then the infusion rate was increased up to a maximum of 210 mcg/kg/min (maximal infusion duration 7 minutes).</p> <p>Results</p> <p>All patients successfully completed the CMR scan. Of a total of 98 patients, 18 (18%) did not demonstrate evidence of a significant increase in HR or decrease in SBP under the standard adenosine infusion rate. Following the increase in the rate of infusion, 16 out of those 18 patients showed an adequate haemodynamic response. One patient of the standard infusion group and two patients of the high-dose group developed transient advanced AV block. Significantly more patients complained of chest pain in the high-dose group (61% vs. 29%, p = 0.009). On multivariate analysis, age > 65 years and ejection fraction < 57% were the only independent predictors of blunted haemodynamic responsiveness to adenosine.</p> <p>Conclusions</p> <p>A substantial number of patients do not show adequate peripheral haemodynamic response to standard-dose adenosine stress during perfusion CMR imaging. Age and reduced ejection fraction are predictors of inadequate response to standard dose adenosine. A high-dose adenosine protocol (up to 210 mcg/kg/min) is well tolerated and results in adequate haemodynamic response in nearly all patients.</p

    Left Ventricle Quantification Using Direct Regression with Segmentation Regularization and Ensembles of Pretrained 2D and 3D CNNs

    Full text link
    Cardiac left ventricle (LV) quantification provides a tool for diagnosing cardiac diseases. Automatic calculation of all relevant LV indices from cardiac MR images is an intricate task due to large variations among patients and deformation during the cardiac cycle. Typical methods are based on segmentation of the myocardium or direct regression from MR images. To consider cardiac motion and deformation, recurrent neural networks and spatio-temporal convolutional neural networks (CNNs) have been proposed. We study an approach combining state-of-the-art models and emphasizing transfer learning to account for the small dataset provided for the LVQuan19 challenge. We compare 2D spatial and 3D spatio-temporal CNNs for LV indices regression and cardiac phase classification. To incorporate segmentation information, we propose an architecture-independent segmentation-based regularization. To improve the robustness further, we employ a search scheme that identifies the optimal ensemble from a set of architecture variants. Evaluating on the LVQuan19 Challenge training dataset with 5-fold cross-validation, we achieve mean absolute errors of 111 +- 76mm^2, 1.84 +- 0.9mm and 1.22 +- 0.6mm for area, dimension and regional wall thickness regression, respectively. The error rate for cardiac phase classification is 6.7%.Comment: Accepted at the MICCAI Workshop STACOM 201

    Cardiac magnetic resonance for ventricular arrhythmias: a systematic review and meta-analysis

    Get PDF
    Background: Cardiac magnetic resonance (CMR) allows comprehensive myocardial tissue characterisation, revealing areas of myocardial inflammation or fibrosis that may predispose to ventricular arrhythmias (VAs). With this study, we aimed to estimate the prevalence of structural heart disease (SHD) and decipher the prognostic implications of CMR in selected patients presenting with significant VAs. Methods: Electronic databases were searched for studies enrolling adult patients that underwent CMR for diagnostic or prognostic purposes in the setting of significant VAs. A random effects model meta-analysis of proportions was performed to estimate the prevalence of SHD. HRs were pooled together in order to evaluate the prognostic value of CMR. Results: The prevalence of SHD was reported in 18 studies. In all-comers with significant VAs, the pooled rate of SHD post-CMR evaluation was 39% (24% in the subgroup of premature ventricular contractions and/or non-sustained ventricular tachycardia vs 63% in the subgroup of more complex VAs). A change in diagnosis after use of CMR ranged from 21% to 66% with a pooled average of 35% (29%–41%). A non-ischaemic cardiomyopathy was the most frequently identified SHD (56%), followed by ischaemic heart disease (21%) and hypertrophic cardiomyopathy (5%). After pooling together data from six studies, we found that the presence of late gadolinium enhancement was associated with increased risk of major adverse outcomes in patients with significant VAs (pooled HR: 1.79; 95% CI 1.33 to 2.42). Conclusion: CMR is a valuable tool in the diagnostic and prognostic evaluation of patients with VAs. CMR should be considered early after initial evaluation in the diagnostic algorithm for VAs of unclear aetiology as this strategy may also define prognosis and improve risk stratification

    Accelerating global left-ventricular function assessment in mice using reduced slice acquisition and three-dimensional guide-point modelling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the utility of three-dimensional guide-point modeling (GPM) to reduce the time required for CMR evaluation of global cardiac function in mice, by reducing the number of image slices required for accurate quantification of left-ventricular (LV) mass and volumes.</p> <p>Methods</p> <p>Five female C57Bl/6 mice 8 weeks post myocardial infarction induced by permanent occlusion of the left coronary artery, and six male control (un-operated) C57Bl/6 mice, were subject to CMR examination under isoflurane anaesthesia. Contiguous short axis (SAX) slices (1 mm thick 7-9 slices) were obtained together with two long axis (LAX) slices in two chamber and four chamber orientations. Using a mathematical model of the heart to interpolate information between the available slices, GPM LV mass and volumes were determined using full slice (all SAX and two LAX), six slice (four SAX and two LAX) and four slice (two SAX and two LAX) analysis protocols. All results were compared with standard manual volumetric analysis using all SAX slices.</p> <p>Results</p> <p>Infarct size was 39.1 ± 5.1% of LV myocardium. No significant differences were found in left ventricular mass and volumes between the standard and GPM full and six slice protocols in infarcted mice (113 ± 10, 116 ± 11, and 117 ± 11 mg respectively for mass), or between the standard and GPM full, six and four slice protocols in control mice, (105 ± 14, 106 ± 10, 104 ± 12, and 105 ± 7 mg respectively for mass). Significant differences were found in LV mass (135 ± 18 mg) and EF using the GPM four slice protocol in infarcted mice (p < 0.05).</p> <p>Conclusion</p> <p>GPM enables accurate analysis of LV function in mice with relatively large infarcts using a reduced six slice acquisition protocol, and in mice with normal/symmetrical left-ventricular topology using a four slice protocol.</p

    The AIQ Meta-Testbed: Pragmatically Bridging Academic AI Testing and Industrial Q Needs

    Full text link
    AI solutions seem to appear in any and all application domains. As AI becomes more pervasive, the importance of quality assurance increases. Unfortunately, there is no consensus on what artificial intelligence means and interpretations range from simple statistical analysis to sentient humanoid robots. On top of that, quality is a notoriously hard concept to pinpoint. What does this mean for AI quality? In this paper, we share our working definition and a pragmatic approach to address the corresponding quality assurance with a focus on testing. Finally, we present our ongoing work on establishing the AIQ Meta-Testbed.Comment: Accepted for publication in the Proc. of the Software Quality Days 2021, Vienna, Austri

    Magnetic resonance imaging phantoms for quality-control of myocardial T1 and ECV mapping: specific formulation, long-term stability and variation with heart rate and temperature

    Get PDF
    Background: Magnetic resonance imaging (MRI) phantoms are routinely used for quality assurance in MRI centres; however their long term stability for verification of myocardial T1/ extracellular volume fraction (ECV) mapping has never been investigated. Methods: Nickel-chloride agarose gel phantoms were formulated in a reproducible laboratory procedure to mimic blood and myocardial T1 and T2 values, native and late after Gadolinium administration as used in T1/ECV mapping. The phantoms were imaged weekly with an 11 heart beat MOLLI sequence for T1 and long TR spin-echo sequences for T2, in a carefully controlled reproducible manner for 12 months. Results: There were only small relative changes seen in all the native and post gadolinium T1 values (up to 9.0 % maximal relative change in T1 values) or phantom ECV (up to 8.3 % maximal relative change of ECV, up to 2.2 % maximal absolute change in ECV) during this period. All native and post gadolinium T2 values remained stable over time with <2 % change. Temperature sensitivity testing showed MOLLI T1 values in the long T1 phantoms increasing by 23.9 ms per degree increase and short T1 phantoms increasing by 0.3 ms per degree increase. There was a small absolute increase in ECV of 0.069 % (~0.22 % relative increase in ECV) per degree increase. Variation in heart rate testing showed a 0.13 % absolute increase in ECV (~0.45 % relative increase in ECV) per 10 heart rate increase. Conclusions: These are the first phantoms reported in the literature modeling T1 and T2 values for blood and myocardium specifically for the T1mapping/ECV mapping application, with stability tested rigorously over a 12 month period. This work has significant implications for the utility of such phantoms in improving the accuracy of serial scans for myocardial tissue characterisation by T1 mapping methods and in multicentre work
    corecore