166 research outputs found

    Modeling Software Characteristics and Their Correlations in A Specific Domain by Comparing Existing Similar Systems

    Get PDF
    QSIC 2005, Melbourne, Australia, Sep. 2005Software in a specific domain has several characteristics and each characteristic should be fixed when the software requirements are specified. In addition, these characteristics sometimes correlate with each other. However, we sometimes forget to specify several characteristics and/or to take their correlations into account during requirements elicitation. In this paper, we propose a meta-model for representing such characteristics and their correlations, and also propose a method to build a model for a specific domain by using documents about existing software systems. By using our model for a domain, a requirements specification for a system in the domain could be complete and unambiguous because requirements analysts can check the characteristics that should be decided. The specification could be also correct and consistent because the analysts can know side effects of a requirement change by using correlation among the characteristics. We have applied our methods to a case study for confirming the usefulness of such model and the methods.ArticleProceedings : the Fifth International Conference on Quality Software. 215-222 (2005)conference pape

    COOL-LAMPS III: Discovery of a 25".9 Separation Quasar Lensed by a Merging Galaxy Cluster

    Get PDF
    In the third paper from the COOL-LAMPS Collaboration, we report the discovery of COOL J0542-2125, a gravitationally lensed quasar at z=1.84z=1.84, observed as three images due to an intervening massive galaxy cluster at z=0.61z=0.61. The lensed quasar images were identified in a search for lens systems in recent public optical imaging data and have separations on the sky up to 25".9, wider than any previously known lensed quasar. The galaxy cluster acting as a strong lens appears to be in the process of merging, with two sub-clusters separated by ∌1\sim 1 Mpc in the plane of the sky, and their central galaxies showing a radial velocity difference of ∌1000\sim 1000 km/s. Both cluster cores show strongly lensed images of an assortment of background sources, as does the region between them. A preliminary strong lens model implies masses of $M(<250\ \rm{kpc}) = 1.79^{+0.16} _{-0.01} \times 10^{14} M_{\odot}and and M(<250\ \rm{kpc}) = 1.48^{+0.04}_{-0.10} \times 10^{14} M_{\odot}$ for the East and West sub-clusters, respectively. This line of sight is also coincident with a ROSAT ALL-sky Survey source, centered between the two confirmed cluster halos reminiscent of other major cluster-scale mergers.Comment: 13 pages, 6 figures. Submitted to Ap

    COOL-LAMPS. IV. A Sample of Bright Strongly Lensed Galaxies at 3 < z < 4

    Get PDF
    We report the discovery of five bright, strong gravitationally lensed galaxies at 3 < z < 4: COOL J0101+2055 (z = 3.459), COOL J0104−0757 (z = 3.480), COOL J0145+1018 (z = 3.310), COOL J0516−2208 (z = 3.549), and COOL J1356+0339 (z = 3.753). These galaxies have magnitudes of rAB, zAB < 21.81 mag and are lensed by galaxy clusters at 0.26 < z < 1. This sample nearly doubles the number of known bright lensed galaxies with extended arcs at 3 < z < 4. We characterize the lensed galaxies using ground-based grz/giy imaging and optical spectroscopy. We report model-based magnitudes and derive stellar masses, dust content, and star formation rates via stellar population synthesis modeling. Building lens models based on ground-based imaging, we estimate source magnifications ranging from ∌29 to ∌180. Combining these analyses, we derive demagnified stellar masses in the range log10(M∗/M⊙)∌9.69−10.75{\mathrm{log}}_{10}({M}_{* }/{M}_{\odot })\sim 9.69-10.75 and star formation rates in the youngest age bin in the range log10(SFR/(M⊙ yr−1))∌0.39−1.46{\mathrm{log}}_{10}(\mathrm{SFR}/({M}_{\odot }\,{\mathrm{yr}}^{-1}))\sim 0.39-1.46, placing the sample galaxies on the massive end of the star-forming main sequence in this redshift interval. In addition, three of the five galaxies have strong Lyα emissions, offering unique opportunities to study Lyα emitters at high redshift in future work

    COOL-LAMPS. VI. Lens Model and New Constraints on the Properties of COOL J1241+2219, a Bright z = 5 Lyman Break Galaxy and its z = 1 Cluster Lens

    Get PDF
    We present a strong lensing analysis of COOL J1241+2219, the brightest known gravitationally lensed galaxy at z ≄ 5, based on new multiband Hubble Space Telescope (HST) imaging data. The lensed galaxy has a redshift of z = 5.043, placing it shortly after the end of the “Epoch of Reionization,” and an AB magnitude z AB = 20.47 mag (Khullar et al.). As such, it serves as a touchstone for future research of that epoch. The high spatial resolution of HST reveals internal structure in the giant arc, from which we identify 15 constraints and construct a robust lens model. We use the lens model to extract the cluster mass and lensing magnification. We find that the mass enclosed within the Einstein radius of the z = 1.001 cluster lens is M(<5.″77)=1.079−0.007+0.023×1013M☉ , significantly lower than other known strong lensing clusters at its redshift. The average magnification of the giant arc is ă€ˆÎŒ arc〉 = 76−20+40 , a factor of 2.4−0.7+1.4 greater than previously estimated from ground-based data; the flux-weighted average magnification is ă€ˆÎŒ arc〉 = 92−31+37 . We update the current measurements of the stellar mass and star formation rate (SFR) of the source for the revised magnification to log(M⋆/M⊙)= 9.7 ± 0.3 and SFR = 10.3−4.4+7.0 M ⊙ yr−1, respectively. The powerful lensing magnification acting upon COOL J1241+2219 resolves the source and enables future studies of the properties of its star formation on a clump-by-clump basis. The lensing analysis presented here will support upcoming multiwavelength characterization with HST and JWST data of the stellar mass assembly and physical properties of this high-redshift lensed galaxy

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29
    • 

    corecore