3,525 research outputs found

    Frustrated quantum Ising spins simulated by spinless bosons in a tilted lattice: from a quantum liquid to antiferromagnetic order

    Get PDF
    We study spinless bosons in a decorated square lattice with a near-diagonal tilt. The resonant subspace of the tilted Mott insulator is described by an effective Hamiltonian of frustrated quantum Ising spins on a non-bipartite lattice. This generalizes an earlier proposal for the unfrustrated quantum Ising model in one dimension which was realized in a recent experiment on ultracold 87^{87}Rb atoms in an optical lattice. Very close to diagonal tilt, we find a quantum liquid state which is continuously connected to the paramagnet. Frustration can be reduced by increasing the tilt angle away from the diagonal, and the system undergoes a transition to an antiferromagnetically ordered state. Using quantum Monte Carlo simulations and exact diagonalization, we find that for realistic system sizes the antiferromagnetic order appears to be quasi-one-dimensional; however, in the thermodynamic limit the order is two-dimensional.Comment: 27 pages, 14 figure

    Metallic spin glasses

    Full text link
    Recent work on the zero temperature phases and phase transitions of strongly random electronic system is reviewed. The transition between the spin glass and quantum paramagnet is examined, for both metallic and insulating systems. Insight gained from the solution of infinite range models leads to a quantum field theory for the transition between a metallic quantum paramagnetic and a metallic spin glass. The finite temperature phase diagram is described and crossover functions are computed in mean field theory. A study of fluctuations about mean field leads to the formulation of scaling hypotheses.Comment: Contribution to the Proceedings of the ITP Santa Barbara conference on Non-Fermi liquids, 25 pages, requires IOP style file

    Quantum criticality of U(1) gauge theories with fermionic and bosonic matter in two spatial dimensions

    Get PDF
    We consider relativistic U(1) gauge theories in 2+1 dimensions, with N_b species of complex bosons and N_f species of Dirac fermions at finite temperature. The quantum phase transition between the Higgs and Coulomb phases is described by a conformal field theory (CFT). At large N_b and N_f, but for arbitrary values of the ratio N_b/N_f, we present computations of various critical exponents and universal amplitudes for these CFTs. We make contact with the different spin-liquids, charge-liquids and deconfined critical points of quantum magnets that these field theories describe. We compute physical observables that may be measured in experiments or numerical simulations of insulating and doped quantum magnets.Comment: 30 pages, 8 figure

    Comment on "Spin Transport properties of the quantum one-dimensional non-linear sigma model"

    Full text link
    In a recent preprint (cond-mat/9905415), Fujimoto has used the Bethe ansatz to compute the finite temperature, zero frequency Drude weight of spin transport in the quantum O(3) non-linear sigma model in a magnetic field H≠0H \neq 0. We show here that, contrary to his claims, the results are in accord with earlier semiclassical results (Sachdev and Damle, cond-mat/9610115). We also comment on his 1/N expansion, and show that it does not properly describe the long-time correlations.Comment: 4 page

    Ultracold bosons in a synthetic periodic magnetic field: Mott phases and re-entrant superfluid-insulator transitions

    Get PDF
    We study Mott phases and superfluid-insulator (SI) transitions of ultracold bosonic atoms in a two-dimensional square optical lattice at commensurate filling and in the presence of a synthetic periodic vector potential characterized by a strength pp and a period l=qal=qa, where qq is an integer and aa is the lattice spacing. We show that the Schr\"odinger equation for the non-interacting bosons in the presence of such a periodic vector potential can be reduced to an one-dimensional Harper-like equation which yields qq energy bands. The lowest of these bands have either single or double minima whose position within the magnetic Brillouin zone can be tuned by varying pp for a given qq. Using these energies and a strong-coupling expansion technique, we compute the phase diagram of these bosons in the presence of a deep optical lattice. We chart out the pp and qq dependence of the momentum distribution of the bosons in the Mott phases near the SI transitions and demonstrate that the bosons exhibit several re-entrant field-induced SI transitions for any fixed period qq. We also predict that the superfluid density of the resultant superfluid state near such a SI transition has a periodicity qq (q/2q/2) in real space for odd (even) qq and suggest experiments to test our theory.Comment: 8 pages, 11 figures, v

    Putting competing orders in their place near the Mott transition

    Get PDF
    We describe the localization transition of superfluids on two-dimensional lattices into commensurate Mott insulators with average particle density p/q (p, q relatively prime integers) per lattice site. For bosons on the square lattice, we argue that the superfluid has at least q degenerate species of vortices which transform under a projective representation of the square lattice space group (a PSG). The formation of a single vortex condensate produces the Mott insulator, which is required by the PSG to have density wave order at wavelengths of q/n lattice sites (n integer) along the principle axes; such a second-order transition is forbidden in the Landau-Ginzburg-Wilson framework. We also discuss the superfluid-insulator transition in the direct boson representation, and find that an interpretation of the quantum criticality in terms of deconfined fractionalized bosons is only permitted at special values of q for which a permutative representation of the PSG exists. We argue (and demonstrate in detail in a companion paper: L. Balents et al., cond-mat/0409470) that our results apply essentially unchanged to electronic systems with short-range pairing, with the PSG determined by the particle density of Cooper pairs. We also describe the effect of static impurities in the superfluid: the impurities locally break the degeneracy between the q vortex species, and this induces density wave order near each vortex. We suggest that such a theory offers an appealing rationale for the local density of states modulations observed by Hoffman et al. (cond-mat/0201348) in STM studies of the vortex lattice of BSCCO, and allows a unified description of the nucleation of density wave order in zero and finite magnetic fields. We note signatures of our theory that may be tested by future STM experiments.Comment: 35 pages, 16 figures; (v2) part II is cond-mat/0409470; (v3) added new appendix and clarifying remarks; (v4) corrected typo

    Hall conductivity from dyonic black holes

    Full text link
    A class of strongly interacting 2+1 dimensional conformal field theories in a transverse magnetic field can be studied using the AdS/CFT duality. We compute zero momentum hydrodynamic response functions of maximally supersymmetric 2+1 dimensional SU(N) Yang-Mills theory at the conformal fixed point, in the large N limit. With background magnetic field B and electric charge density rho, the Hall conductivity is found to be rho/B. The result, anticipated on kinematic grounds in field theory, is obtained from perturbations of a four dimensional AdS black hole with both electric and magnetic charges.Comment: 1+13 pages. TT correlator corrected. Typos corrected and added ref

    Non-equilibrium dynamic critical scaling of the quantum Ising chain

    Full text link
    We solve for the time-dependent finite-size scaling functions of the 1D transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally-studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively athermal features of the scaling functions, such as negative spin correlations, and show that they should be robustly observable within present cold atom experiments.Comment: 4 pages + 2 page supplemen

    Purification of genuine multipartite entanglement

    Full text link
    In tasks, where multipartite entanglement plays a central role, state purification is, due to inevitable noise, a crucial part of the procedure. We consider a scenario exploiting the multipartite entanglement in a straightforward multipartite purification algorithm and compare it to bipartite purification procedures combined with state teleportation. While complete purification requires an infinite amount of input states in both cases, we show that for an imperfect output fidelity the multipartite procedure exhibits a major advantage in terms of input states used.Comment: 5 pages, 2 figure

    Quantum simulator for the Ising model with electrons floating on a helium film

    Full text link
    We propose a physical setup that can be used to simulate the quantum dynamics of the Ising model with present-day technology. Our scheme consists of electrons floating on superfluid helium which interact via Coulomb forces. In the limit of low temperatures, the system will stay near the ground state where its Hamiltonian is equivalent to the Ising model and thus shows phenomena such as quantum criticality. Furthermore, the proposed design could be generalized in order to study interacting field theories (e.g., λϕ4\lambda\phi^4) and adiabatic quantum computers.Comment: 4 page
    • …
    corecore