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Abstract
We study spinless bosons in a decorated square lattice with a near-diagonal tilt. The resonant

subspace of the tilted Mott insulator is described by an effective Hamiltonian of frustrated quantum

Ising spins on a non-bipartite lattice. This generalizes an earlier proposal for the unfrustrated

quantum Ising model in one dimension which was realized in a recent experiment on ultracold
87Rb atoms in an optical lattice. Very close to diagonal tilt, we find a quantum liquid state which

is continuously connected to the paramagnet. Frustration can be reduced by increasing the tilt

angle away from the diagonal, and the system undergoes a transition to an antiferromagnetically

ordered state. Using quantum Monte Carlo simulations and exact diagonalization, we find that for

realistic system sizes the antiferromagnetic order appears to be quasi-one-dimensional; however, in

the thermodynamic limit the order is two-dimensional.
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I. INTRODUCTION

Recent experimental progress in the field of ultracold atomic gases has made it possible

to study quantum many-body physics in a controllable and clean setting. This makes cold

atoms in optical lattices candidates for analog quantum simulators of real materials. Since

the observation of a quantum phase transition from a superfluid state to an interaction driven

insulating state1, there has been much effort to simulate other correlated quantum phases,

such as magnetic phases. Many proposals suggest using an internal degree of freedom of

the atoms to simulate a spin degree of freedom. Virtual hopping processes then lead to an

effective magnetic interaction called super-exchange. The energy scale of those processes is

still low compared to experimentally reachable temperatures, and so magnetic long range

order has not yet been observed.

An important milestone was recently reached taking a surprising new route: an equi-

librium quantum phase transition of an antiferromagnetic spin chain was simulated using

spinless bosons in a non-equilibrium situation. Following the theoretical proposal of Ref. 2,

Simon et al.
3 examined a one-dimensional array of 87Rb atoms in an optical lattice; an addi-

tional potential gradient (‘tilt’) drove the transition from the Mott insulating state to a state

with density wave order. This happened in a metastable state, which is not the ground state

of the full bosonic hamiltonian. However, the dynamics of the tilted lattice was confined

to a resonantly connected effective subspace, which has an energy bounded from below,

and so a mapping to an antiferromagnetic Ising model in a transverse and longitudinal

field is possible.2 Changing the tilt magnitude corresponds to changing the strength of the

longitudinal field, and this takes the systems through an Ising quantum phase transition.

In Ref. 4, we have shown that a variety of correlated phases are possible in tilted two

dimensional lattices. A mapping to a spin model is in general not possible in two dimensions.

In this paper we focus on a lattice- and tilt configuration where a spin mapping is possible

also in two dimension: a diagonally tilted decorated square lattice of bosons leads to a

spin model on a non-bipartite lattice, the “octagon-square-cross lattice” (see Figure 1). We

start from the Mott insulator with a filling factor of one atom per lattice site, and assume

that effective three-body interaction are important, such that triply occupied sites are not

allowed. It has been shown4 that in this system, three-body interactions have important

qualitative effects; in particular, if three body interactions are negligible, then the system

maps to a quantum dimer model on a square lattice.4

When the potential drop per lattice site is comparable to the on-site repulsion, then the

only processes allowed in the resonant subspace are creations of ‘dipoles’ along the links of

the lattice. A dipole is created when a boson follows the tilt direction and moves onto a

neighboring site, which already contains one boson. This process costs the on-site repulsion

energy U and gains potential energy E. In the parameter regime |U − E| � U,E all other

processes are off-resonant.2

Due to conservation of energy any lattice site can be part of no more than one dipole.
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FIG. 1: Decorated square lattice in a near-diagonal tilt: a) shows the physical lattice for the
bosons. The spins reside on the links, which form the lattice shown in b). The effective resonant
subspace of the boson model of the decorated square lattice (a) maps to an antiferromagnet on the
octagon-square-cross lattice (b) in a strong longitudinal and in a transverse magnetic field. If the
tilt is not exactly diagonal, then spins on horizontal lines experience a different longitudinal field
than spins on vertical lines. The spin lattice is not bipartite, and in this sense the antiferromagnet
is frustrated.

We can map the Hamiltonian of the resonant subspace to a spin model by associating a spin

state to each link: spin up if no dipole has been created on that link, and spin down if a

dipole has been created on that link. The hard constraint forbidding overlapping dipoles

translates to a strong antiferromagnetic interaction in a strong longitudinal field, and so we

obtain an Ising antiferromagnet.

As this lattice is not bipartite, antiferromagnetic order is not possible, even for a weak

longitudinal field (where the antiferromagnetic interaction dominates over the magnetic

field). In this sense the Ising spin model on this lattice is geometrically frustrated.

Let us first briefly review4 the case of a diagonal tilt. The parent Mott insulator remains

stable to a weak tilt. In the other limit, the strongly tilted case, the system wants to

maximize the number of dipoles. Due to the nearest-neighbor exclusion constraint, and due

to the lattice geometry, there can be no more than one dipole per unit cell. The lattice

has four links per unit cell, and so there is a lot of room for the dipoles to fluctuate.

Quantum fluctuations then create a unique and gapped ground state: an equal amplitude

superposition of all classically allowed dipole coverings4. This disordered quantum liquid

state is continuously connected to the parent Mott insulator; it is part of the same phase,

as shown in the phase diagram in Fig. 2.
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FIG. 2: Phase diagram of the near-diagonally tilted decorated square lattice, determined by quan-
tum Monte-Carlo calculations. The tuning parameters are λx and λy which parametrize the cost
for having a dipole in x and y direction, respectively. a) for realistic system sizes there appears
to be only one-dimensional order. This is a finite-size artifact, arising from the fact that for these
system sizes the finite-size gap dominates over the (antiferromagnetic) inter-chain coupling. b) in
the thermodynamic limit we predict 2d quantum Ising transitions to a phase where neighboring
chains are aligned antiferromagnetically.

The physics becomes more interesting when the tilt �E = (Ex, Ey) deviates slightly from

the diagonal, Ex �= Ey. Dipoles in x direction and dipoles in y direction now do not cost

the same energy, and we define ∆x = U − Ex (∆y = U − Ey) the energy associated with a

dipole in x (y) direction.

In the limit ∆y → ∞; ∆x/∆y → 0 the system can reduce its potential energy by max-

imizing the number of dipoles in y direction; no dipoles in x direction are created in the

ground state. Thus the system decouples into a collection of horizontally aligned chains. In

the absence of vertical dipoles these chains cannot interact with each other, and so each of

them undergoes an independent 1d Ising transition (see Fig. 2).

In this paper we study the full phase diagram of the near-diagonally tilted decorated

square lattice. An important question is whether there is a region in the phase diagram

where 2d order develops, i.e. whether a coupling develops between the above mentioned

chains. We find that for realistic system sizes the crossover looks like the one of a collection

of independent 1d chains. This is due to the fact that the inter-chain coupling is small

compared to the finites-size gap of each chain between the symmetric and anti-symmetric

superposition of its two ground states. There is thus no 2d order. A schematic phase diagram

for this situation is shown in Figure 2a. The situation is different in the thermodynamic

limit. As the finite-size gap vanishes the inter-chain coupling dominates, causing the chains

to align anitferromagnetically. The schematic phase diagram in the thermodynamic limit is
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shown in Figure 2a.

The remainder of this paper is organized as follows. In Section II we introduce the

model and describe the effective resonant subspace. In Section III we study the system by

quantum Monte-Carlo (QMC) simulations and find no sign of a coupling between the chains.

In Section IV we will show by exact diagonalization of a model system consisting of only two

chains that there is indeed a very small coupling between these chains, which arises from

processes in very high order in perturbation theory. We present conclusions in Section V.

II. MODEL

In this section we describe the effective resonant subspace of a near-diagonally tilted

decorated square lattice. We begin by recalling the Hamiltonian of a tilted Mott insulator. It

is described by the generalized bosonic Hubbard model with an additional potential gradient

along a certain direction, H = Hkin +HU +Htilt:

Hkin = −t

�

<ij>

�
b̂
†
i b̂j + b̂

†
j b̂i

�
(2.1a)

HU =
U

2

�

i

n̂i(n̂i − 1) +
U3

6

�

i

ni(ni − 1)(ni − 2) + . . . (2.1b)

Htilt = −E

�

i

e · ri n̂i. (2.1c)

Here b̂i are canonical boson operators on lattice sites i at spatial co-ordinate ri, and n̂i ≡ b̂
†
i b̂i.

The first term in HU describes two body interactions. The second term is an effective three

body interaction, generated by virtual processes involving higher bands5,6. Such a term is

present in ultracold atomic systems, and dramatically changes the physics of a tilted lattice,

as we have shown in Ref. 4: if U3 is not negligible compared to other energy scales in the

problem, then this term causes processes which create triply occupied sites to be off-resonant.

The potential gradient is E, and the fixed vector e is normalized so that the smallest change

in potential energy between neighboring lattice sites has magnitude E. We assume that the

potential drop per lattice site E is comparable to the on-site repulsion U . The tilt has now

two components �E = (Ex, Ey), we define ∆x = U − Ex and ∆y = U − Ey, and we work in

the parameter regime where

|∆x| , |∆y| , t � |U | , |E| , |U3| . (2.2)

We assume that the parent Mott insulator has filling factor one atom per lattice site. The

effective resonant subspace of the near-diagonally tilted decorated square lattice is then
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FIG. 3: Effective five-state model: each unit cell of the decorated square lattice can be in one out
of five possible states: having no dipole, or having a dipole on one of the four links. There is also a
constraint that dipoles may not overlap: two neighboring unit cells may not have dipoles directed
towards each other. Thus the effective model is a constraint five state model on a simple square
lattice.

described by the Hamiltonian

Ĥ = ∆x

�

i∈x-links

d̂
†
i d̂i +∆y

�

j∈y-links

d̂
†
j d̂j −

√
2t

�

a

�
d̂a + d̂

†
a

�
, (2.3)

here d̂
†
a (d̂a) creates (annihilates) a dipole on a link a; where the first sum runs only over

links aligned in x direction, the second sum only over links aligned in y direction. These

two terms describe the energy cost/gain for having a dipole. The last sum comes from the

hopping term and describes creation and annihilation of dipoles; it runs over all links. The

dipoles obey a hard-core constraint: there can be no more than one dipole on each link.

Additionally there is a constraint which does not allow dipoles to overlap on a site: each

lattice site can be part of no more than one dipole.

For following discussion, we define the two independent tuning parameters

λx =
∆x√
2t
, λy =

∆y√
2t

(2.4)

These two parameters can take all real values.

A. Description by a constrained five-state model

We can describe the resonantly connected subspace for all values of our tuning parameters

λx and λy by a constrained five-state model on a simple square lattice. We let our unit cell

be centered about the sites with four neighbors. Each of the unit cells may be in one out

of five states, see Fig. 3: It may contain no dipole (state |0�), or it may contain one dipole,

and there are four links to choose from (states |1�, |2�, |3�, |4�). The Hamiltonian of a single
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site is then given by

Hsite = Hpot +Hkin

Hpot = λx (|2� �2|+ |4� �4|) + λy (|1� �1|+ |3� �3|)
Hkin = − |0� (�1|+ �2|+ �3|+ �4|) + h.c.. (2.5)

Summing over all sites we obtain the free Hamiltonian of the five state system

Hfree =

Lx,Ly�

x,y=1

Hsite(x, y).

Additionally there is a constraint that the dipoles may not overlap: two neighboring unit

cells may not point toward each other. We take this into account by projecting out all the

states which would create such a collision

H
c = PcHfreePc

where Pc is a projection operator which projects out all the states that are forbidden by the

constraint.

B. Mapping to a frustrated Ising spin model

In Refs. 2 and 3, the physics of a tilted one-dimensional Mott Insulator was described

by an antiferromagnetic Ising spin chain in a transverse and longitudinal field. In the same

spirit, we map the diagonally tilted decorated square lattice to an antiferromagnetic spin

model, also in longitudinal and transverse field, on a frustrated lattice. Note that the spin

degrees of freedom reside on the links of the decorated square lattice, so that the lattice of

the spin model is an ‘octagon-square-cross’ lattice as depicted in Fig. 1. This lattice has four

sites per unit cell, and each spin has zcoord = 4 neighbors. As the lattice is not bipartite, an

antiferromagnetic spin model on this lattice is frustrated, and two-dimensional Ising order

is not possible. The Hamiltonian of the resonant subspace can be described by the following

spin model

H = J




�

�i,j�

S
i
zS

j
z − h

LR
z

�

i∈LR

S
i
z − h

UD
z

�

i∈UD

S
i
z − hx

�

i

S
i
x



 (2.6a)

h
LR
z =

�
2− ∆x

J

�
, h

UD
z =

�
2− ∆y

J

�
(2.6b)

hx = 2
√
2
t

J
(2.6c)
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where �S = 1
2�σ. The second sum (i ∈ LR) is over all spins which reside on lines in horizontal

direction, see Fig. 1, and the third sum (i ∈ UD) is over spins that reside on vertical lines.

While the first three terms all commute with each other, the last term does not. It is

this transverse field which makes this a quantum problem. The strong antiferromagnetic

interaction and the strong longitudinal field are introduced to realize the constraint: having

two neighboring spin down costs an energy of order J . The mapping becomes exact in the

limit J → ∞. As in one dimension, this is of course not a mapping of the full bosonic model

to a spin model, but of the resonantly connected subspace.

We will phrase most of the following discussion in the language of the constrained five-

state model, keeping in mind that the results can directly be applied to the frustrated Ising

spin model.

C. Limiting cases

We understand the system in the following limiting cases

1. λx,λy → ∞, λx/λy = 1 (weak diagonal tilt): The parent Mott insulator is stable to a

weak tilt, and so the dipole vacuum is the ground state in this limit. Dipole creation

costs a large amount of energy, and so dipoles are only virtually created.

2. λx,λy → −∞, λx/λy = 1 (strong diagonal tilt): This is the quantum liquid state

described in Ref. 4. The number of dipoles is maximized, and the ground state is an

equal amplitude superposition of all dipole product states that fulfill the constraint.

As we have shown in Ref. 4 this is a disordered state; the ground state is unique and

gapped.

3. λy → +∞; λx/λy → 0: along this line vertical dipole states on links aligned in y di-

rection cannot be occupied, as they cost an infinite amount of energy, while horizontal

dipoles along links in x direction are accessible. In this limit the system decouples

into a collection of horizontal one-dimensional chains. These chains are effectively

one-dimensional, they undergo a phase transition in the Ising universality class 1at a

critical value of λy = −1.31 (which is the same as in the one-dimensional case).

We expect the one-dimensional order within each chain to persist when λy takes on finite

values. Neighboring chains may then interact via dipole states aligned in y direction, which

might lead to a coupling between these chains, and thus to two-dimensional order.

1 The symmetry which is broken in the ordered phase is a reflection symmetry. The lattice does not have

this translation symmetry unless ∆x is strictly infinite
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III. PHASE DIAGRAM OBTAINED FROM QUANTUM MONTE CARLO

Here we present results from a Quantum Monte Carlo study of the effective resonant

subspace of the near-diagonally tilted decorated square lattice. We emphasize that we do

not simulate the full bosonic Hamiltonian: QMC would then look for the absolute ground

state, which means that all bosons follow the tilt and fall down to minus infinity. Instead

we simulate the effective resonant subspace, which is described by the constrain five state

model.

A. Order parameters

As we expect one-dimensional order to persist in some region of the phase diagram, we

introduce order parameters which probe for 1D Ising order, as well as order parameters

which probe for two-dimensional order.

Before introducing our order parameters, we begin by reviewing the order parameter of

the one-dimensional system in Refs. 2,3: a staggered magnetization which breaks lattice

symmetries (translation, inversion, and reflection symmetry). In the language of the spin

mapping in Section II B, and Ref. 3 it is given by

M =
1

L

�

l

(−1)lσz
l .

In the limit λy = ∞, λx/λy = 0 each unit cell of the decorated square lattice has only three

states available, and we can directly translate this staggered magnetization to our notation.

Each chain aligned along the x direction and at position y then has its own, independent

order parameter

MLR(y) =
1

Lx

�

x

(p̂→ − p̂←)x,y =
1

Lx

�

x

mLR(x, y), (3.1)

where p̂d is a projection operator that projects onto the dipole state d. Note that this order

parameter is normalized to take values in the interval [−1, 1]. The (staggered) magnetization

of each unit cell has been defined for dipoles along left-right direciton only as

mLR(x, y) = p̂← − p̂→

When λy �= ∞, each unit cell has two additional states available2. We can still use the above

2 This breaks the translation symmetry of the one-dimensional chain explicitly: There is no translation

relating the state |→� to the state |←�, under which the order parameter would change sign. There is,

however, an inversion symmetry and a reflection symmetry left, which can be spontaneously broken by
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definition, and add another component to the order parameter,

mUD(x, y) = p̂↓ − p̂↑

the magnetization for dipoles aligned in y direction. We combine the two to a vector,

�m(x, y) =

�
mLR(x, y)

mUD(x, y)

�

we will refer to this as the “magnetization” of a unit cell of our system. The magnetization

�m(x, y) transforms as a vector and is odd under inversion. To probe for two-dimensional

order in the system, we define the total magnetization

�M =
1

LxLy

�

x,y

�m(x, y). (3.2)

and measure � �M2�. If the chains are aligned ferromagnetically, then this order parameer

is non-zero. To probe for antiferromagnetically aligned chains we define a total staggered

magnetization

�Mstagg,x =
1

LxLy

�

x,y

(−1)x �m(x, y),

�Mstagg,y =
1

LxLy

�

x,y

(−1)y �m(x, y).

For an anisotropic tilt we expect the most important effect to be an order within each

chain. These chains may or may not be coupled to form two-dimensional order. It is

therefore usefull to define order parameters which probe for one-dimensional order along x

or y direction only. For this purpose we will use MLR(y), Eq. 3.1, and average its square

over all chains,

��M2
LR�� =

1

Ly

�

y

�M2
LR(y)� =

1

Lx

1

L2
y

�

x,y,y�

�mLR(x, y)mLR(x, y
�)� (3.3)

and similarly for for chains aligned along y, ��M2
UD�� = 1

Lx

�
x�M2

UD(y)�.

an ordered state.
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FIG. 4: Phase diagram obtained from QMC study. We find only one-dimensional order. The
two-dimensional order parameters are zero everywhere. The phase boundary was obtained from
crossing of the binder cumulant of the one-dimensional magnetization, Eq. (3.3). Square lattice
of size Lx = Ly = (4, 8, 16, 32, 64) the imaginary time slice thickness was a = 0.04, imaginary
time direction was scaled with the linear system size, Mτ = (40, 80, 160, 320, 640), corresponding
to temparatures T = (0.625, 0.3125, 0.1562, 0.0781, 0.0391). Essentially the same phase diagram is
obtained from order parameter scaling assuming the Ising exponent η = 1/4.

B. Phase diagram

Results of the QMC simulations are summarized in the phase diagram shown in Figure 4.

The disordered dipole state for λx,λy → −∞ appers to be continuously connected to the

parent Mott insulator at λx,λy → +∞ . There is a critical line where the system undergoes

a transition to an ordered state with one dimensional order along individual chains. For

λy < λx these chains are aligned in y direction (lower right corner of the phase diagram in

Fig. 4), and ��M2
UD�� �= 0, while � �M2� = � �M2

stagg,x� = � �M2
stagg,y� = 0. We will show below that

11
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FIG. 5: Absence of two dimensional order in the QMC study. Here we show the scaling of
the total magnetization with system size, � �M2� × L. For randomly aligned magnetized chains we
expect� �M2� ∝ 1/L, while for perfectly aligned chains � �M2� = const and for antiferromagnetic order
in transverse direction � �M2� = 0. In the disordered phase � �M2� ∝ 1/(LxLy). This shows that in
the ordered phase the system behaves as a collection of independent chains with one-dimensional
order within each chain. Similar results are obtained for different cuts through the phase diagram.

the system indeed seems to be disordered in the transverse direction; each chain appears to

have a two-fold degenerate ground state, which is independenent of the order parameters of

the neighboring chains, and so the two-dimensional system has a ground state degeneracy

2Lx , where Lx is the linear system size in x direction, i.e. the number of chains. Correlations

in the x direction decay exponentially with a correlation length which is smaller than the

lattice spacing, ξx � a. There is no region in the phase diagram where either � �M2�, Eq. 3.2,
or � �M2

stagg,x� or � �M2
stagg,y� takes a non-zero value.

We probe for two-dimensional order by measuring � �M2�. This quantity scales with system

size exactly as it would for a collection randomly aligned magnetized one-dimensional chains.

This suggests that there is no two-dimensional order: while in some regions of the phase

diagram there is long range order along individual chains, there is no correlation between

these chains, see Figure 5.
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We find good data collapse with the critical exponents of the 2D classical Ising model

(Onsager exponents), see Appendix. This further supports the observation that individual

chains behave as independent 1d Ising systems.

IV. INTER CHAIN COUPLING: EXACT DIAGONALIZATION STUDY

Quantum Monte Carlo results describe a system which decouples into a collection of one-

dimensional chains, while on symmetry grounds one would expect that a coupling between

the chains should be generated. The following scenarios might explain this disagreement

• hidden symmetry : there could be a subtle microscopic symmetry which forbids any

coupling between the order parameters of the chains. The next relevant term is then

the energy-energy coupling, which leads to a change of the critical exponent ν but no

ordering of the chains; or

• finite size effects: the coupling between the chains could be present, but is too small

to have an observable effect for the system sizes studied with QMC. Simulating larger

lattices should then, in principle, find a phase with two-dimensional order.

Here we resolve this question by an exact diagonalization study of a toy model, which consists

of two chains and qualitatively captures the interchain constraint, and thus the coupling.

We find that a coupling between two neighboring chains is indeed present: it is antiferro-

magnetic in sign and very small in magnitude. It appears only in 20th order in perturbation

theory in t/|U −E| within the bosonic model, and is thus not observable for realistic system

sizes, neither in QMC nor in cold-atomic quantum simulation experiments.

A. Toy model

We use a simplified model with only two chains. We reduce the Hilbert space further

by only keeping the three most relevant dipole states in each unit cell, see Figure 6. The

state without dipole has been integrated out3, while one of the vertical dipole states is

missing: this enhances the coupling and reduces the size of the Hilbert space, which enables

us to study longer chains. We expect this toy model to qualitativley describe the interchain

coupling of our system.

The Hamiltonian for each of a single unit cell reads

Hsite =




∆b −tb −tb

−tb ∆a −ta

−tb −ta ∆a





3 this of course only works for ∆x,∆y < 0
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FIG. 6: Two chain model used for the exact diagonalization study. Each central site (marked with
a square) can be in one out of three states. A chain of length four unitcels is shown. This model
should capture the interchain behavior of our model qualitatively.

where ∆a is the energy cost for a dipol along chain direction, and ∆b is the energy cost for

a dipole in direction transverse to the chains. The effective hopping elements ta, and tb are

obtained from second order perturbation theory, and they both have a negative sign (since

∆a < ∆b < 0).

tb = t
2

�
1

∆a
+

1

∆b

�
, (4.1)

ta =
2t2

∆a
, (4.2)

In addition to the single site Hamiltonian, there is the hard-core constraint forbidding two

central sites from pointing toward each other. This constraint reduces the size of the Hilbert

space. The size of the Hilbert space for any chain length L can be computed exactly using

transfer matrices. For long chains it grows as dim(H) ∼ 5.35L.

B. Results

We diagonalized this system for a chains of up to length nine4, with periodic boundary

conditions. In analyzing the results, it is useful to compare the spectrum to that of a simple

model of two decoupled Ising chains in the ordered phase. For systems of finite length, this

model would give four low-energy states, whose splitting vanishes exponentially with the

system size in the thermodynamic limit.

4 while we can diagonalize chains of length nine in all regions of the phase diagram, in some regions the

splitting between the lowest eigenvalues seems to become smaller than machine precision, this limits our

analysis.
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Fig. 7 shows the energy of the three lowest excited states relative to the ground state,

as a function of the system size. At first glance, these results are consistent with the

model of completely decoupled chains, since the energy splitting to the three lowest excited

states appears to vanish exponentially. However, for certain parameters and for the longest

systems (fig. 7b), we observe a deviation from the decoupled chain model. Two of the

low-energy states remain nearly degenerate, while the gap to the other two starts deviating

from exponential. This behavior is consistent with having a small but non-zero inter-chain

coupling.
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FIG. 7: Strong finite-size effects: Logarithmic plot for energy of the first three excited states
relative to the ground state as a function of system length, for (a) ∆a = −5,∆b = −4 (b) ∆a =
−7,∆b = −1. The lines E1 − E0 and E2 − E0 appear on top of each other. At first sight this
suggests that there are four ground states in the thermodynamic limit and that thus the order
parameters of the chains are not coupled. However there is a small splitting between the first
two levels above the ground state. This splitting grows linearly with system size and eventually
dominates over the finite size gap for long enough chains.

1. Estimate of the order parameter coupling

The following observations further support the existence of a small coupling between the

order parameters of the two chains:

1. There is a splitting between the first and the second excited state, E2 − E1. This

splitting is too small to be visible in Fig. 7a. We present it in Fig. 8. Although

the magnitude of the splitting is very small, it grows approximately linearly with

system size, consistent with a finite energy density associated with an inter-chain

order parameter coupling.
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FIG. 8: Splitting between first and second excited state grows linearly with system size. This
suggests that there is indeed a coupling between the order parameters of these two chain.

2. We can show that there is no hidden symmetry forbidding order parameter coupling:

if we fix the boundary conditions5 to make the chains either aligned or anti-aligned,

there is a difference in ground state energy of these two systems which grows linearly

with system size, see Fig. 9. We can use the slope of this curve as an estimate for the

coupling of the order parameters per unit cell.

The slopes of both curves in Fig. 7,9 agree approximately, giving us a good estimate for

the order parameter coupling of the chains. For the system sizes we studied, however, this

coupling is smaller than the effective tunneling element between the different ground states,

i.e. smaller than the finite size gap. For larger chains this order parameter coupling will

start to dominate over the tunneling, and then there will only be two ground state. The

coupling between two chains is antiferromagnetic.

5 We can view the segment under consideration as a part of a very long system, which is aligned either

ferromagnetically or antiferromagnetically. The remainder of the long system provides the boundary

conditions for the segment.
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FIG. 9: The inter-chain coupling is antiferromagnetic, which we show by fixing the boundary
conditions so that the chains are forced to be either aligned or anti-aligned. The energy differ-
ence grows linearly with system size and antiferromagnetic boundary conditions are energetically
favorable.

2. Estimate of order in perturbation theory for coupling

We now estimate the order in perturbation theory in which the antiferromagnetic coupling

is generated. To this end, we set ta = tb = 1 and use ∆ = ∆b − ∆a as our only tuning

parameter. Let Ec be the energy per unit length of the antiferromagnetic coupling

Ec =
E2 − E1

N

(here N is the chain length). If the antiferromagnetic coupling appears in nth order in

perturbation theory, then

Ec ∝ |∆|1−n (4.3)

log (Ec) = (1− n) log (|∆|) + const (4.4)

We plot logEc versus log(|∆|) and obtain n = 10 from a linear fit (see Fig. 10). This suggests

that the antiferromagnetic inter-chain coupling is generated in 10th order in perturbation

theory within this toy model, and in 20th order in perturbation theory within the bosonic

model.
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FIG. 10: The antiferromagnetic coupling appears in 10th order in perturbation theory. This
logarithmic plot shows that the coupling per unit length scales as |∆|−9, where ∆ = ∆b −∆a.

C. Mechanism for inter-chain coupling

Having established that, in the ordered phase, the chains couple antiferromagnetically, it

is natural to ask what is the microscopic mechanism responsible for this coupling. Below,

we give a qualitative argument for the generation of inter-chain coupling in high orders in

t/∆, which predicts that the sign of the coupling should be antiferromagnetic.

We begin by the observation that in the Ising ordered phase, there are two distinct types

of domain wall fluctuations, a kink and an anti-kink (see Fig. 11(a,b)). Kink-anti kink pairs

can be generated virtually, lowering the kinetic energy. We note also that the two domain

walls have a parametrically different effective mass: the kink (Fig. 11a) can hop via a process

of order t2b/(|∆a−∆b|), while the anti-kink (Fig. 11b) is much lighter, hopping via a process

of order ta. Therefore, the anti-kinks are more delocalized. We note also that kink-anti-

kink pairs in a fully ordered configuration are always created in the same orientation, see

Fig 11c. If the order parameter of a chain points to the left, then each kink is on the right

side of its anti-kink partner. As a consequence, worlds lines of kinks curve in the opposite

direction than world lines of anti-kinks; and which way they curve is determined by the sign

of the order parameter. Some typical space-time paths of fluctuating kink-anti kink pairs

are shown schematically in Fig. 11c.
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FIG. 11: A kink (a) and anti-kink (b) configuration. Kinks in different chains cannot reside on
the same rung, because of the hard-core constraint; no such restriction exists for the anti-kinks. c)
Schematic space-time trajectories for kink-anti kink pairs. The kinks (anti-kinks) are represented by
solid (dashed) lines, respectively. The arrows represent the direction of the Ising order parameter.
The average order parameter is assumed to be pointing to the left. In this configuration, the kinks
are typically to the right of the anti-kinks, and their world lines typically curve left. Since the two
chains couple only through the kinks, this provides a mechanism for coupling the order parameters
of the two chains; if the order parameters are anti-aligned, there is a larger “phase space” for kink-
anti kink fluctuations (since the world lines of kinks in the two chains curve in opposite directions),
reducing the kinetic energy.

The order parameters of two neighboring chains are not coupled directly; i.e., in a clas-

sical, fully ordered configuration (which is the ground state in the limit ta,b = 0), there is

no energy difference between an aligned and an anti-aligned configuration. However, in the

presence of quantum fluctuations, the two chains become coupled. For instance, in our two-

chain model, kinks cannot occur simultaneously on both chains, because of the constraint

preventing two dipoles to point towards each other. Note that there is no such constraint

for anti-kinks; configurations in which anti-kinks in the two chains occur on the same rung

are allowed.

This hard-core interaction between kinks provides a mechanism for coupling the order

parameters of the two chains. Consider the kink space-time configuration in Fig. 11c.

In this configuration the world lines of kinks tend to curve to the right. The repulsive

interaction between kinks on the two chains reduces the “phase space” available for quantum

fluctuations. However, one can imagine that if the two order parameters are anti-aligned,

the phase space for fluctuations is slightly larger than in the opposite case, since then the

space-time trajectories of the kinks on the upper and lower chains tend to curve in opposite

ways, allowing one to fit more quantum fluctuations in a given space-time “volume” (thus

lowering the kinetic energy). This “order by disorder” mechanism explains how the repulsion

between anti-kinks can generate a coupling between the order parameters of the two chains

to high order in ta,b/|∆a−∆b|. Moreover, it predicts that the coupling is antiferromagnetic,

consistently with the ED findings described above.
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V. CONCLUSIONS

We have proposed a setup to simulate frustrated quantum Ising spins with cold atoms

in a tilted optical lattice, by generalizing an idea which has been successfully applied ex-

perimentally in one dimension. We have studied the phase diagram of the resulting model

and found that it has strong finite size effects. While for realistic systems it decouples into

a collection of one dimensional Ising chains, a coupling between the chains is present in the

thermodynamic limit. A quantum simulator of ultracold atoms would however, be limited

in the system size. We therefore expect it to observe a one-dimensional transition to ordered

chains, just as we did in QMC.
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Appendix A: Details on the QMC study

a. Binder cumulant

The binder cumulant gives a good estimate for the critical point, and it does not depend

on critical exponents7. For an Ising order parameter, M , the binder cumulant is defined as

U = 1− �M4�
3 �M2�2

.

When the binder cumulant is plotted for different system sizes, all curves should cross at

the critical point for the following reason. While for an infinite system the magnetization

vanishes at the critical point as

M ∝ (−τ)β ,

where τ is the reduced temperature τ = T/Tc − 1, β is the critical exponent of the magneti-

zation. For a finite system there are corrections to scaling, described by a scaling function

φ, which only depends on ξ/L,

M = (−τ)β φ (ξ/L) = (−τ)β φ̃
�
τL

1/ν
�
,

where ξ is the correlation length, and ν is the correlation length exponent. We used ξ = τ
−ν

to rewrite the scaling function for a different argument. The average magnetization squared,
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and raised to the fourth power, have different scaling functions,

�
M

2
�
= (−τ) 2β

u2

�
τL

1/ν
�

�
M

4
�
= (−τ) 4β

u4

�
τL

1/ν
�

and so the binder cumulant is a function of this same argument, τL1/ν

U(τ, L) = 1−
u4

�
τL

1/ν
�

3 (u2 (τL1/ν))2
= f

�
τL

1/ν
�
, (A1)

At the critical point we have τ = 0, and so the binder cumulant at this point should not

depend on system sizeIn the thermodynamic limit for an Ising system in the ordered phase

U → 2
3 , and U → 0 in the disordered phase. Fig. 12 shows the binder cumulant of the one-

dimensional order parameters ��M2
LR�� and ��M2

UD�� for different cuts through the phase

diagram.

b. Order parameter scaling and the critical exponent η

The phase transition point can also be found from order paramter scaling. This will

depend on the correlation length exponent, η. Let M again be an Ising order parameter, at

the critical point the correlation decays as a power law,

�M(r)M(0)� ∝ |�r|−(d+z−2+η) (A2)

z is the dynamic critical exponent, which is z = 1 in case of the Ising model. We define

M as the (normalized) total magnetization M = 1/L
�
M(r)dr, and for a one dimensional

system (d = 1) we have

�M2� ∝ L
−η (A3)

The correlation length exponent for the 2D classical Ising model is η = 1/4. In Figure 14

we plot ��M2
LR��L−1/4 and ��M2

UD��L−1/4 for different system sizes. The crossing point of

these lines gives us the phase boundary which agrees with the one found from the binder

cumulant.

c. Critical exponent ν

If we rescale the x axis for the binder cumulant, and plot it as a function of (λ− λc)L1/ν ,

then the data points for all system sizes should collapse. We indeed observe a good data

collapse for the correlation length exponent of the classical two-dimensional Ising model,
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FIG. 12: Binder cumulant for order parameters ��M2
LR�� and ��M2

UD�� for a horizontal cut through
the phase diagram, keeping ∆x = −5 fixed, plotted for different system sizes, Lx = Ly =
4, 8, 16, 32, 64.
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FIG. 13: Binder cumulant of ��M2
UD�� along different cuts throught the phase diagram: here

∆x = 10 and ∆x = −2.
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FIG. 14: Order parameter scaling, assuming the correlation length exponent η = 1/4 of the classical
two-dimensional Ising model. Good agreement of the crossing points, also with the ones found from
the binder cumulant.
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FIG. 15: Data collapse for the critical exponent ν = 1 of the classical two-dimensional Ising model.
The x axis is centered around the critical point and rescaled by L1/ν

ν = 1, see Fig. 15.
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