765 research outputs found

    Silent MST approximation for tiny memory

    Get PDF
    In network distributed computing, minimum spanning tree (MST) is one of the key problems, and silent self-stabilization one of the most demanding fault-tolerance properties. For this problem and this model, a polynomial-time algorithm with O(log2 ⁣n)O(\log^2\!n) memory is known for the state model. This is memory optimal for weights in the classic [1,poly(n)][1,\text{poly}(n)] range (where nn is the size of the network). In this paper, we go below this O(log2 ⁣n)O(\log^2\!n) memory, using approximation and parametrized complexity. More specifically, our contributions are two-fold. We introduce a second parameter~ss, which is the space needed to encode a weight, and we design a silent polynomial-time self-stabilizing algorithm, with space O(logns)O(\log n \cdot s). In turn, this allows us to get an approximation algorithm for the problem, with a trade-off between the approximation ratio of the solution and the space used. For polynomial weights, this trade-off goes smoothly from memory O(logn)O(\log n) for an nn-approximation, to memory O(log2 ⁣n)O(\log^2\!n) for exact solutions, with for example memory O(lognloglogn)O(\log n\log\log n) for a 2-approximation

    Optical system and method for gas detection and monitoring

    Get PDF
    A free-space optical path of an optical interferometer is disposed in an environment of interest. A light beam is guided to the optical interferometer using a single-mode optical fiber. The light beam traverses the interferometer's optical path. The light beam guided to the optical path is combined with the light beam at the end of the optical path to define an output light. A temporal history of the output light is recorded

    Hyperbolic Geometry of Complex Networks

    Full text link
    We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as non-interacting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure

    Recent advances on information transmission and storage assisted by noise

    Full text link
    The interplay between nonlinear dynamic systems and noise has proved to be of great relevance in several application areas. In this presentation, we focus on the areas of information transmission and storage. We review some recent results on information transmission through nonlinear channels assisted by noise. We also present recent proposals of memory devices in which noise plays an essential role. Finally, we discuss new results on the influence of noise in memristors.Comment: To be published in "Theory and Applications of Nonlinear Dynamics: Model and Design of Complex Systems", Proceedings of ICAND 2012 (Springer, 2014

    Design and Bolometer Characterization of the SPT-3G First-year Focal Plane

    Get PDF
    During the austral summer of 2016-17, the third-generation camera, SPT-3G, was installed on the South Pole Telescope, increasing the detector count in the focal plane by an order of magnitude relative to the previous generation. Designed to map the polarization of the cosmic microwave background, SPT-3G contains ten 6-in-hexagonal modules of detectors, each with 269 trichroic and dual-polarization pixels, read out using 68x frequency-domain multiplexing. Here we discuss design, assembly, and layout of the modules, as well as early performance characterization of the first-year array, including yield and detector properties.Comment: Conference proceeding for Low Temperature Detectors 2017. Accepted for publication: 27 August 201

    Efficacy and safety of the anti-IL-12/23 p40 monoclonal antibody, ustekinumab, in patients with active psoriatic arthritis despite conventional non-biological and biological anti-tumour necrosis factor therapy: 6-month and 1-year results of the phase 3, multicentre, double-blind, placebo-controlled, randomised PSUMMIT 2 trial

    Get PDF
    Objective: Assess ustekinumab efficacy (week 24/week 52) and safety (week 16/week 24/week 60) in patients with active psoriatic arthritis (PsA) despite treatment with conventional and/or biological anti-tumour necrosis factor (TNF) agents. Methods: In this phase 3, multicentre, placebo-controlled trial, 312 adults with active PsA were randomised (stratified by site, weight (≤100 kg/>100 kg), methotrexate use) to ustekinumab 45 mg or 90 mg at week 0, week 4, q12 weeks or placebo at week 0, week 4, week 16 and crossover to ustekinumab 45 mg at week 24, week 28 and week 40. At week 16, patients with <5% improvement in tender/swollen joint counts entered blinded early escape (placebo→45 mg, 45 mg→90 mg, 90 mg→90 mg). The primary endpoint was ≥20% improvement in American College of Rheumatology (ACR20) criteria at week 24. Secondary endpoints included week 24 Health Assessment Questionnaire-Disability Index (HAQ-DI) improvement, ACR50, ACR70 and ≥75% improvement in Psoriasis Area and Severity Index (PASI75). Efficacy was assessed in all patients, anti-TNF-naïve (n=132) patients and anti-TNF-experienced (n=180) patients. Results: More ustekinumab-treated (43.8% combined) than placebo-treated (20.2%) patients achieved ACR20 at week 24 (p<0.001). Significant treatment differences were observed for week 24 HAQ-DI improvement (p<0.001), ACR50 (p≤0.05) and PASI75 (p<0.001); all benefits were sustained through week 52. Among patients previously treated with ≥1 TNF inhibitor, sustained ustekinumab efficacy was also observed (week 24 combined vs placebo: ACR20 35.6% vs 14.5%, PASI75 47.1% vs 2.0%, median HAQ-DI change −0.13 vs 0.0; week 52 ustekinumab-treated: ACR20 38.9%, PASI75 43.4%, median HAQ-DI change −0.13). No unexpected adverse events were observed through week 60. Conclusions: The interleukin-12/23 inhibitor ustekinumab (45/90 mg q12 weeks) yielded significant and sustained improvements in PsA signs/symptoms in a diverse population of patients with active PsA, including anti-TNF-experienced PsA patients

    Sequence Specific Motor Performance Gains after Memory Consolidation in Children and Adolescents

    Get PDF
    Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training
    corecore