234 research outputs found
Disentangling cortical functional connectivity strength and topography reveals divergent roles of genes and environment
The human brain varies across individuals in its morphology, function, and cognitive capacities. Variability is particularly high in phylogenetically modern regions associated with higher order cognitive abilities, but its relationship to the layout and strength of functional networks is poorly understood. In this study we disentangled the variability of two key aspects of functional connectivity: strength and topography. We then compared the genetic and environmental influences on these two features. Genetic contribution is heterogeneously distributed across the cortex and differs for strength and topography. In heteromodal areas genes predominantly affect the topography of networks, while their connectivity strength is shaped primarily by random environmental influence such as learning. We identified peak areas of genetic control of topography overlapping with parts of the processing stream from primary areas to network hubs in the default mode network, suggesting the coordination of spatial configurations across those processing pathways. These findings provide a detailed map of the diverse contribution of heritability and individual experience to the strength and topography of functional brain architecture.Nanyang Technological UniversityPublished versionThis work was supported by the Medical University of Vienna, the Austrian Research Fund (FWF) [grants P 35189, P 34198, and I 3925-B27] in collaboration with the French National Research Agency (ANR), the Vienna Science and Technology Fund (WWTF) [LS20-065], the European Research Council Grant [866533-CORTIGRAD], the National Natural Science Foundation of China [Grant No. 81790652, No.81790650] and the NAM Advanced Biomedical Imaging Program [FY2016] between Nanyang Technological University, Singapore and Medical University of Vienna, Austria
Use of the AFX Stent Graft in Patients with Extremely Narrow Aortic Bifurcation: A Multicenter Retrospective Study
Introduction
This study analyzed the patient outcomes following endovascular aortic aneurysm repair (EVAR) for infrarenal aortic pathologies with very narrow aortic bifurcations using the AFX stent graft.
Methods
The data was retrieved from the archived medical records of 35 patients treated for abdominal aortic aneurysm (AAA) (48.6%) or penetrating aortic ulcer (PAU) (51.4%) with very narrow aortic bifurcation between January 2013 and May 2020. Patient survival, freedom from endoleak (EL), and limb occlusion were estimated applying the Kaplan-Meier method.
Results
The mean follow-up time was 20.4 ± 22.8 months. The mean aortic bifurcation diameter was 15.8 ± 2.2 mm. Technical success was 100%, and no procedure-related deaths occurred. Two type II ELs occurred within 30-day follow-up. We observed one common iliac artery stenosis at four months and one type III EL at 54 months in the same patient, both of which required re-intervention. Overall patient survival was 95 ± 5% (AAA: 100%; PAU: 89 ± 10%), freedom from limb occlusion was 94 ± 5% (AAA: 91 ± 9%; PAU: 100%), freedom from type II EL was 94 ± 4% (AAA: 88 ± 8%; PAU: 100%), and freedom from EL type III was 83 ± 15% (AAA: 80 ± 18%; PAU: 100%) at the end of the follow-up period.
Conclusions
Very narrow aortic bifurcations may predispose patients to procedure-related complications following EVAR. Our results suggest a safe use of the AFX stent graft in such scenarios. The overall short- and long-term procedure-related patient outcomes are satisfying albeit they may seem superior for PAU when compared to AAA
Multi-material additive manufacturing of low sintering temperature Bi2Mo2O9 ceramics with Ag floating electrodes by selective laser burnout
Additive manufacturing (AM) of co-fired low temperature ceramics offers a unique route for fabrication of novel 3D radio frequency (RF) and microwave communication components, embedded electronics and sensors. This paper describes the first-ever direct 3D printing of low temperature co-fired ceramics/floating electrode 3D structures. Slurry-based AM and selective laser burnout (SLB) were used to fabricate bulk dielectric, Bi2Mo2O9 (BMO, sintering temperature = 620–650°C, εr = 38) with silver (Ag) internal floating electrodes. A printable BMO slurry was developed and the SLB optimised to improve edge definition and burn out the binder without damaging the ceramic. The SLB increased the green strength needed for shape retention, produced crack-free parts and prevented Ag leaching into the ceramic during co-firing. The green parts were sintered after SLB in a conventional furnace at 645°C for 4 h and achieved 94.5% density, compressive strength of 4097 MPa, a relative permittivity (εr) of 33.8 and a loss tangent (tan δ) of 0.0004 (8 GHz) for BMO. The feasibility of using SLB followed by a post-printing sintering step to create BMO/Ag 3D structures was thus demonstrated
GeantV: Results from the prototype of concurrent vector particle transport simulation in HEP
Full detector simulation was among the largest CPU consumer in all CERN
experiment software stacks for the first two runs of the Large Hadron Collider
(LHC). In the early 2010's, the projections were that simulation demands would
scale linearly with luminosity increase, compensated only partially by an
increase of computing resources. The extension of fast simulation approaches to
more use cases, covering a larger fraction of the simulation budget, is only
part of the solution due to intrinsic precision limitations. The remainder
corresponds to speeding-up the simulation software by several factors, which is
out of reach using simple optimizations on the current code base. In this
context, the GeantV R&D project was launched, aiming to redesign the legacy
particle transport codes in order to make them benefit from fine-grained
parallelism features such as vectorization, but also from increased code and
data locality. This paper presents extensively the results and achievements of
this R&D, as well as the conclusions and lessons learnt from the beta
prototype.Comment: 34 pages, 26 figures, 24 table
Data-based investigation of the effects of canopy structure and shadows on chlorophyll fluorescence in a deciduous oak forest
Data from satellite, aircraft, drone, and ground-based measurements have already shown that canopy-scale sun-induced chlorophyll fluorescence (SIF) is tightly related to photosynthesis, which is linked to vegetation carbon assimilation. However, our ability to effectively use those findings are hindered by confounding factors, including canopy structure, fluctuations in solar radiation, and sun–canopy geometry that highly affect the SIF signal. Thus, disentangling these factors has become paramount in order to use SIF for monitoring vegetation functioning at the canopy scale and beyond. Active chlorophyll fluorescence measurements (FyieldLIF), which directly measures the apparent fluorescence yield, have been widely used to detect physiological variation of the vegetation at the leaf scale. Recently, the measurement of FyieldLIF has become feasible at the canopy scale, opening up new opportunities to decouple structural, biophysical, and physiological components of SIF at the canopy scale. In this study, based on top-of-canopy measurements above a mature deciduous forest, reflectance (R), SIF, SIF normalized by incoming photosynthetically active radiation (SIFy), FyieldLIF, and the ratio between SIFy and FyieldLIF (named Φk) were used to investigate the effects of canopy structure and shadows on the diurnal and seasonal dynamics of SIF. Further, random forest (RF) models were also used to not only predict FyieldLIF and Φk, but also provide an interpretation framework by considering additional variables, including the R in the blue, red, green, red-edge, and near-infrared bands; SIF; SIFy; and solar zenith angle (SZA) and solar azimuth angle (SAA). Results revealed that the SIF signal is highly affected by the canopy structure and sun–canopy geometry effects compared to FyieldLIF. This was evidenced by the weak correlations obtained between SIFy and FyieldLIF at the diurnal timescale. Furthermore, the daily mean SIF‾y captured the seasonal dynamics of daily mean F‾yieldLIF and explained 58 % of its variability. The findings also revealed that reflectance in the near-infrared (R-NIR) and the NIRv (the product of R-NIR and normalized difference vegetation index (NDVI)) are good proxies of Φk at the diurnal timescale, while their correlations with Φk decrease at the seasonal timescale. With FyieldLIF and Φk as outputs and the abovementioned variables as predictors, this study also showed that the RF models can explain between 86 % and 90 % of FyieldLIF, as well as 60 % and 70 % of Φk variations under clear-sky conditions. In addition, the predictor importance estimates for FyieldLIF RF models revealed that R at 410, 665, 740, and 830 nm; SIF; SIFy; SZA; and SAA emerged as the most useful and influential factors for predicting FyieldLIF, while R at 410, 665, 705, and 740 nm; SZA; and SAA are crucial for predicting Φk. This study highlighted the complexity of interpreting diurnal and seasonal dynamics of SIF in forest canopies. These dynamics are highly dependent on the complex interactions between the structure of the canopy, the vegetation biochemical properties, the illumination angles (SZA and SAA), and the light conditions (ratio of diffuse to direct solar radiation). However, such measurements are necessary to better separate the variability in SIF attributable to radiation and measurement conditions from the subtler variability attributable to plant physiological processes.</p
CEFLES2: the remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands
The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO2 fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes in support of ESA's Candidate Earth Explorer Mission of the "Fluorescence Explorer" (FLEX). The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors: (i) the prototype airborne sensor AirFLEX quantified fluorescence in the oxygen A and B bands, (ii) a hyperspectral spectrometer (ASD) measured reflectance along transects during 12 day courses, (iii) spatially high resolution georeferenced hyperspectral data cubes containing the whole optical spectrum and the thermal region were gathered with an AHS sensor, and (iv) the first employment of the high performance imaging spectrometer HYPER delivered spatially explicit and multi-temporal transects across the whole region. During three measurement periods in April, June and September 2007 structural, functional and radiometric characteristics of more than 20 different vegetation types in the Les Landes region, Southwest France, were extensively characterized on the ground. The campaign concept focussed especially on quantifying plant mediated exchange processes (photosynthetic electron transport, CO2 uptake, evapotranspiration) and fluorescence emission. The comparison between passive sun-induced fluorescence and active laser-induced fluorescence was performed on a corn canopy in the daily cycle and under desiccation stress. Both techniques show good agreement in detecting stress induced fluorescence change at the 760 nm band. On the large scale, airborne and ground-level measurements of fluorescence were compared on several vegetation types supporting the scaling of this novel remote sensing signal. The multi-scale design of the four airborne radiometric measurements along with extensive ground activities fosters a nested approach to quantify photosynthetic efficiency and gross primary productivity (GPP) from passive fluorescence
Bioactive Secondary Metabolites from a New Terrestrial Streptomyces sp. TN262
During our search for Streptomyces spp. as new producers of bioactive secondary metabolites, the ethyl acetate extract of the new terrestrial Streptomyces isolate TN262 delivered eight antimicrobially active compounds. They were identified as 1-acetyl-β-carboline (1), tryptophol (2), cineromycin B (3), 2,3-dihydrocineromycin B (4), cyclo-(tyrosylprolyl) (5), 3-(hydroxyacetyl)-indole (6), brevianamide F (7), and cis-cyclo-(l-prolyl-l-leucyl) (8). Three further metabolites were detected in the unpolar fractions using GC–MS and tentatively assigned as benzophenone (9), N-butyl-benzenesulfonamide (10), and hexanedioic acid-bis-(2-ethylhexyl) ester (11). This last compound is known as plasticizer derivatives, but it has never been described from natural sources. In this article, we describe the identification of the new Streptomyces sp. isolate TN262 using its cultural characteristics, the nucleotide sequence of the corresponding 16S rRNA gene and the phylogenetic analysis, followed by optimization, large-scale fermentation, isolation of the bioactive constituents, and determination of their structures. The biological activity of compounds (2), (3), (4), and those of the unpolar fractions was addressed as well
- …