5 research outputs found

    Exposure to organic and inorganic traffic-related air pollutants alters haematological and biochemical indices in albino mice Mus musculus

    No full text
    The relationship between air pollution exposure and haematology remains controversial. Evidences in the effect of trace organic air pollutants and in the impact of such exposure on lipid and protein levels are scarce. This work investigated the health effects of medium-term exposure to traffic-related air pollution on both haematological and biochemical indices in animal models. Two groups of albino mice (Mus musculus) were exposed to ambient air polluted by vehicle exhaust for three and six months, and one group was kept as control. Results found significant depletions (p p < 0.05) were observed in platelet, lymphocytes, and serum albumin compared to control condition. Correlation data suggested that significant changes in blood parameters may be altered by the synergistic effect of several organic and inorganic air pollutants.</p

    Characterization of particulate matter in urban environments and its effects on the respiratory system of mice

    No full text
    To investigate the characteristics of ambient particulate matter (PM) and its impacts on animal respiratory system. Place and Duration of Study: The study was conducted in urban area of Mysore city from 2014 to 2017. Methodology: The elemental composition, image interpretation, and size distribution of particles was analysed using energy dispersive X-ray spectroscopy, scanning electron microscopy, and dynamic light scattering methods, respectively. Bronchoalveolar lavage analysis was performed to determine the differential cell counts of leucocytes and lymphocytes in the mice lungs. Histological and histopathological studies have been demonstrated to observe the effect of PM exposure on the lungs tissue of mice. Results: The particle characterization analysis found that roadside PM was dominated by 56% black carbon and trace amount of metal elements. The analysis also shows that almost 90% of ambient particulate matter collected in the urban traffic roads was fine particles (PM2.5). By using bronchoalveolar lavage fluid, bronchial biopsies studies have found the compositional changes in neutrophils, eosinophils, mast cells, monocytes and lymphocytes after exposure to PM. Elevated expression and concentrations of inflammatory mediators have similarly been observed in the respiratory tract of mice. The pathological change like degeneration of alveolar region, pycnotic nuclei, and intercellular spaces with prominent vacuolization in epithelial cells followed by parenchyma and accumulation of particle laden macrophages was evident. Conclusion: Exposure to PM induces pathological changes, differential cell counts, and inflammatory response in the mice lungs in a dose and duration dependent pattern
    corecore