9 research outputs found

    Subsequent cultivation of chondrocytes and mesenchymal stem cells on the devitalised tissue

    Get PDF
    The regeneration of cartilage lesions still represents a major challenge. Cartilage has a tissue-specific architecture, complicating recreation by synthetic biomaterials. A novel approach for reconstruction is the use of devitalised cartilage. Treatment with high hydrostatic pressure (HHP) achieves devitalisation while biomechanical properties are remained. Therefore, in the present study, cartilage was devitalised using HHP treatment and the potential for revitalisation with chondrocytes and mesenchymal stem cells (MSCs) was investigated. The devitalisation of cartilage was performed by application of 480 MPa over 10 minutes. Effective cellular inactivation was demonstrated by the trypan blue exclusion test and DNA quantification. Histology and electron microscopy examinations showed undamaged cartilage structure after HHP treatment. For revitalisation chondrocytes and MSCs were cultured on devitalised cartilage without supplementation of chondrogenic growth factors. Both chondrocytes and MSCs significantly increased expression of cartilage- specific genes. ECM stainings showed neocartilage-like structure with positive AZAN staining as well as collagen type II and aggrecan deposition after three weeks of cultivation. Our results showed that HHP treatment caused devitalisation of cartilage tissue. ECM proteins were not influenced, thus, providing a scaffold for chondrogenic differentiation of MSCs and chondrocytes. Therefore, using HHP-treated tissue might be a promising approach for cartilage repair

    Chondrogene Differenzierung humaner Chondrozyten unter Verwendung von konditionierten Zellkulturmedien

    No full text

    The influence of metallic ions from CoCr28Mo6 on the osteogenic differentiation and cytokine release of human osteoblasts

    No full text
    Inflammatory reactions associated with osteolysis and implant loosening can be the result of generated CoCr particles and the simultaneous release of ions, which are the consequence of wear at the articulating surfaces of metallic implants. By now, there is little knowledge about the influence of CoCr ions on the viability of human osteoblasts (hOB)

    Hemmung der Metallionen-induzierten Osteoklastogenese mittels RANK-Ligand-Inhibitor

    No full text

    Positive impact of IGF-1-coupled nanoparticles on the differentiation potential of human chondrocytes cultured on collagen scaffolds

    No full text
    Juliane Pasold,1 Kathleen Zander,1 Benjamin Heskamp,1 Cordula Grüttner,2 Frank Lüthen,3 Thomas Tischer,1 Anika Jonitz-Heincke,1 Rainer Bader1 1Department of Orthopaedics, Biomechanics and Implant Technology Laboratory, University Medicine Rostock, Rostock, Germany; 2Micromod Particletechnology GmbH, Rostock, Germany; 3Institute of Cell Biology, University Medicine Rostock, Rostock, Germany Purpose: In the present study, silica nanoparticles (sNP) coupled with insulin-like growth factor 1 (IGF-1) were loaded on a collagen-based scaffold intended for cartilage repair, and the influence on the viability, proliferation, and differentiation potential of human primary articular chondrocytes was examined. Methods: Human chondrocytes were isolated from the hyaline cartilage of patients (n=4, female, mean age: 73±5.1 years) undergoing primary total knee joint replacement. Cells were dedifferentiated and then cultivated on a bioresorbable collagen matrix supplemented with fluorescent sNP coupled with IGF-1 (sNP–IGF-1). After 3, 7, and 14 days of cultivation, cell viability and integrity into the collagen scaffold as well as metabolic cell activity and synthesis rate of matrix proteins (collagen type I and II) were analyzed. Results: The number of vital cells increased over 14 days of cultivation, and the cells were able to infiltrate the collagen matrix (up to 120 µm by day 7). Chondrocytes cultured on the collagen scaffold supplemented with sNP–IGF-1 showed an increase in metabolic activity (5.98-fold), and reduced collagen type I (1.58-fold), but significantly increased collagen type II expression levels (1.53-fold; P=0.02) after 7 days of cultivation compared to 3 days. In contrast, chondrocytes grown in a monolayer on plastic supplemented with sNP-IGF-1 had significantly lower metabolic activity (1.32-fold; P=0.007), a consistent amount of collagen type I, and significantly reduced collagen type II protein expression (1.86-fold; P=0.001) after 7 days compared to 3 days. Conclusion: Collagen-based scaffolds enriched with growth factors, such as IGF-1 coupled to nanoparticles, represent an improved therapeutic intervention for the targeted and controlled treatment of articular cartilage lesions. Keywords: chondrogenic differentiation, silica nanoparticles, growth factor, 3D-matrix, cartilage repai
    corecore