14 research outputs found

    Purification and properties of plant cytochrome b5

    Full text link

    Vitalism in contemporary chiropractic: a help or a hinderance?

    Get PDF
    Background: Chiropractic emerged in 1895 and was promoted as a viable health care substitute in direct competition with the medical profession. This was an era when there was a belief that one cause and one cure for all disease would be discovered. The chiropractic version was a theory that most diseases were caused by subluxated (slightly displaced) vertebrae interfering with “nerve vibrations” (a supernatural, vital force) and could be cured by adjusting (repositioning) vertebrae, thereby removing the interference with the body’s inherent capacity to heal. DD Palmer, the originator of chiropractic, established chiropractic based on vitalistic principles. Anecdotally, the authors have observed that many chiropractors who overtly claim to be “vitalists” cannot define the term. Therefore, we sought the origins of vitalism and to examine its effects on chiropractic today. Discussion: Vitalism arose out of human curiosity around the biggest questions: Where do we come from? What is life? For some, life was derived from an unknown and unknowable vital force. For others, a vital force was a placeholder, a piece of knowledge not yet grasped but attainable. Developments in science have demonstrated there is no longer a need to invoke vitalistic entities as either explanations or hypotheses for biological phenomena. Nevertheless, vitalism remains within chiropractic. In this examination of vitalism within chiropractic we explore the history of vitalism, vitalism within chiropractic and whether a vitalistic ideology is compatible with the legal and ethical requirements for registered health care professionals such as chiropractors. Conclusion: Vitalism has had many meanings throughout the centuries of recorded history. Though only vaguely defined by chiropractors, vitalism, as a representation of supernatural force and therefore an untestable hypothesis, sits at the heart of the divisions within chiropractic and acts as an impediment to chiropractic legitimacy, cultural authority and integration into mainstream health care

    Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    No full text
    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ionizing particle (MIP) and a pulse width better than 5 ns FWHM have been currently achieved

    Collision rate monitors for LHC

    No full text
    Collision rate monitors are essential in bringing particle beams into collision and optimizing the performances of a collider. In the case of LHC the relative luminosity will be monitored by measuring the flux of small angle neutral particles produced in the collisions. Due to the very different luminosity levels at the four interaction regions (IR) of LHC two different types of monitors have been developed. At the high luminosity IR (ATLAS and CMS) fast ionization chambers will be installed while at the other two (ALICE and LHC-b) solid state polycrystalline Cadmium Telluride (CdTe) detectors will be used. The ionization chambers are being developed by LBNL while the CdTe monitors are being developed by CERN and CEA-LETI
    corecore