36 research outputs found

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p<0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p<0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Diadenosine tetraphosphate activates P2Y1 receptors that cause smooth muscle relaxation in the mouse colon

    No full text
    P2Y1 receptors play an essential role in inhibitory neuromuscular transmission in the gastrointestinal tract. The signalling pathway involves the opening of small conductance calcium activated potassium-channels (Kca2 family)that results in smooth muscle hyperpolarization and relaxation. Inorganic polyphosphates and dinucleotidic polyphosphates are putative neurotransmitters that potentially act on P2Y1 receptors. A pharmacological approach using both allosteric (MRS2500)and orthosteric (BPTU)blockers of the P2Y1 receptor and openers (CyPPA)and blockers (apamin)of Kca2 channels was used to pharmacologically characterise the effect of these neurotransmitters. Organ bath and microelectrodes were used to evaluate the effect of P1,P4-Di (adenosine-5\u2032)tetraphosphate ammonium salt (Ap4A), inorganic polyphosphates (PolyP)and CyPPA on spontaneous contractions and membrane potential of mouse colonic smooth muscle cells. PolyP neither modified contractions nor membrane potential. In contrast, Ap4A caused a concentration-dependent inhibition of spontaneous contractions reaching a maximum effect at 100 \u3bcM Ap4A response was antagonised by MRS2500 (1 \u3bcM), BPTU (3 \u3bcM)and apamin (1 \u3bcM). CyPPA (10 \u3bcM)inhibited spontaneous contractions and this response was antagonised by apamin but it was not affected by MRS2500 or BPTU. Both CyPPA and Ap4A caused smooth muscle hyperpolarization that was blocked by apamin and MRS2500 respectively. We conclude that Ap4A but not PolyP activates P2Y1 receptors causing smooth muscle hyperpolarization and relaxation. Ap4A signalling causes activation of Kca2 channels through activation of P2Y1 receptors. In contrast, CyPPA acts directly on Kca2 channels. Further studies are needed to evaluate if dinucleotidic polyphosphates are released from inhibitory motor neurons

    Model-based design analysis of an avionics fuel distributed control system

    No full text
    corecore