4,312 research outputs found

    Large quantum fluctuations in the strongly coupled spin-1/2 chains of green dioptase: a hidden message from birds and trees

    Full text link
    The green mineral dioptase Cu6Si6O18(H2O)6 has been known since centuries and plays an important role in esoteric doctrines. In particular, the green dioptase is supposed to grant the skill to speak with trees and to understand the language of birds. Armed with natural samples of dioptase, we were able to unravel the magnetic nature of the mineral (presumably with hidden support from birds and trees) and show that strong quantum fluctuations can be realized in an essentially framework-type spin lattice of coupled chains, thus neither frustration nor low-dimensionality are prerequisites. We present a microscopic magnetic model for the green dioptase. Based on full-potential DFT calculations, we find two relevant couplings in this system: an antiferromagnetic coupling J_c, forming spiral chains along the hexagonal c axis, and an inter-chain ferromagnetic coupling J_d within structural Cu2O6 dimers. To refine the J_c and J_d values and to confirm the proposed spin model, we perform quantum Monte-Carlo simulations for the dioptase spin lattice. The derived magnetic susceptibility, the magnetic ground state, and the sublattice magnetization are in remarkably good agreement with the experimental data. The refined model parameters are J_c = 78 K and J_d = -37 K with J_d/J_c ~ -0.5. Despite the apparent three-dimensional features of the spin lattice and the lack of frustration, strong quantum fluctuations in the system are evidenced by a broad maximum in the magnetic susceptibility, a reduced value of the Neel temperature T_N ~ 15 K >> J_c, and a low value of the sublattice magnetization m = 0.55 Bohr magneton. All these features should be ascribed to the low coordination number of 3 that outbalances the three-dimensional nature of the spin lattice.Comment: Dedicated to Stefan-Ludwig Drechsler on the occasion of his 60th birthday (9 pages, 6 figures

    Seeded Graph Matching via Large Neighborhood Statistics

    Full text link
    We study a well known noisy model of the graph isomorphism problem. In this model, the goal is to perfectly recover the vertex correspondence between two edge-correlated Erd\H{o}s-R\'{e}nyi random graphs, with an initial seed set of correctly matched vertex pairs revealed as side information. For seeded problems, our result provides a significant improvement over previously known results. We show that it is possible to achieve the information-theoretic limit of graph sparsity in time polynomial in the number of vertices nn. Moreover, we show the number of seeds needed for exact recovery in polynomial-time can be as low as n3ϵn^{3\epsilon} in the sparse graph regime (with the average degree smaller than nϵn^{\epsilon}) and Ω(logn)\Omega(\log n) in the dense graph regime. Our results also shed light on the unseeded problem. In particular, we give sub-exponential time algorithms for sparse models and an nO(logn)n^{O(\log n)} algorithm for dense models for some parameters, including some that are not covered by recent results of Barak et al

    Monotone graph limits and quasimonotone graphs

    Full text link
    The recent theory of graph limits gives a powerful framework for understanding the properties of suitable (convergent) sequences (Gn)(G_n) of graphs in terms of a limiting object which may be represented by a symmetric function WW on [0,1][0,1], i.e., a kernel or graphon. In this context it is natural to wish to relate specific properties of the sequence to specific properties of the kernel. Here we show that the kernel is monotone (i.e., increasing in both variables) if and only if the sequence satisfies a `quasi-monotonicity' property defined by a certain functional tending to zero. As a tool we prove an inequality relating the cut and L1L^1 norms of kernels of the form W1W2W_1-W_2 with W1W_1 and W2W_2 monotone that may be of interest in its own right; no such inequality holds for general kernels.Comment: 38 page

    Square-lattice magnetism of diaboleite Pb2Cu(OH)4Cl2

    Full text link
    We report on the quasi-two-dimensional magnetism of the natural mineral diaboleite Pb2Cu(OH)4Cl2 with a tetragonal crystal structure, which is closely related to that of the frustrated spin-1/2 magnet PbVO3. Magnetic susceptibility of diaboleite is well described by a Heisenberg spin model on a diluted square lattice with the nearest-neighbor exchange of J~35 K and about 5% of non-magnetic impurities. The dilution of the spin lattice reflects the formation of Cu vacancies that are tolerated by the crystal structure of diaboleite. The weak coupling between the magnetic planes triggers the long-range antiferromagnetic order below TN~11 K. No evidence of magnetic frustration is found. We also analyze the signatures of the long-range order in heat-capacity data, and discuss the capability of identifying magnetic transitions with heat-capacity measurements.Comment: 10 pages, 10 figures + Supplementary Informatio

    The spin gap in malachite Cu2(OH)2CO3 and its evolution under pressure

    Full text link
    We report on the microscopic magnetic modeling of the spin-1/2 copper mineral malachite at ambient and elevated pressures. Despite the layered crystal structure of this mineral, the ambient-pressure susceptibility and magnetization data can be well described by an unfrustrated quasi-one-dimensional magnetic model. Weakly interacting antiferromagnetic alternating spin chains are responsible for a large spin gap of 120K. Although the intradimer Cu-O-Cu bridging angles are considerably smaller than the interdimer angles, density functional theory (DFT) calculations revealed that the largest exchange coupling of 190K operates within the structural dimers. The lack of the inversion symmetry in the exchange pathways gives rise to sizable Dzyaloshinskii-Moriya interactions which were estimated by full-relativistic DFT+U calculations. Based on available high-pressure crystal structures, we investigate the exchange couplings under pressure and make predictions for the evolution of the spin gap. The calculations evidence that intradimer couplings are strongly pressure-dependent and their evolution underlies the decrease of the spin gap under pressure. Finally, we assess the accuracy of hydrogen positions determined by structural relaxation within DFT and put forward this computational method as a viable alternative to elaborate experiments

    Terrestrial planets across space and time

    Full text link
    The study of cosmology, galaxy formation and exoplanets has now advanced to a stage where a cosmic inventory of terrestrial planets may be attempted. By coupling semi-analytic models of galaxy formation to a recipe that relates the occurrence of planets to the mass and metallicity of their host stars, we trace the population of terrestrial planets around both solar-mass (FGK type) and lower-mass (M dwarf) stars throughout all of cosmic history. We find that the mean age of terrestrial planets in the local Universe is 7±17\pm{}1 Gyr for FGK hosts and 8±18\pm{}1 Gyr for M dwarfs. We estimate that hot Jupiters have depleted the population of terrestrial planets around FGK stars by no more than 10%\approx 10\%, and that only 10%\approx 10\% of the terrestrial planets at the current epoch are orbiting stars in a metallicity range for which such planets have yet to be confirmed. The typical terrestrial planet in the local Universe is located in a spheroid-dominated galaxy with a total stellar mass comparable to that of the Milky Way. When looking at the inventory of planets throughout the whole observable Universe, we argue for a total of 1×1019\approx 1\times 10^{19} and 5×1020\approx 5\times 10^{20} terrestrial planets around FGK and M stars, respectively. Due to light travel time effects, the terrestrial planets on our past light cone exhibit a mean age of just 1.7±0.21.7\pm 0.2 Gyr. These results are discussed in the context of cosmic habitability, the Copernican principle and searches for extraterrestrial intelligence at cosmological distances.Comment: 11 pages, 8 figures. v.2: Accepted for publication in ApJ. Some changes in quantitative results compared to v.1, mainly due to differences in IMF assumption

    An Interesting Class of Operators with unusual Schatten-von Neumann behavior

    Full text link
    We consider the class of integral operators Q_\f on L2(R+)L^2(\R_+) of the form (Q_\f f)(x)=\int_0^\be\f (\max\{x,y\})f(y)dy. We discuss necessary and sufficient conditions on ϕ\phi to insure that QϕQ_{\phi} is bounded, compact, or in the Schatten-von Neumann class \bS_p, 1<p<1<p<\infty. We also give necessary and sufficient conditions for QϕQ_{\phi} to be a finite rank operator. However, there is a kind of cut-off at p=1p=1, and for membership in \bS_{p}, 0<p10<p\leq1, the situation is more complicated. Although we give various necessary conditions and sufficient conditions relating to Q_{\phi}\in\bS_{p} in that range, we do not have necessary and sufficient conditions. In the most important case p=1p=1, we have a necessary condition and a sufficient condition, using L1L^1 and L2L^2 modulus of continuity, respectively, with a rather small gap in between. A second cut-off occurs at p=1/2p=1/2: if \f is sufficiently smooth and decays reasonably fast, then \qf belongs to the weak Schatten-von Neumann class \wS{1/2}, but never to \bS_{1/2} unless \f=0. We also obtain results for related families of operators acting on L2(R)L^2(\R) and 2(Z)\ell^2(\Z). We further study operations acting on bounded linear operators on L2(R+)L^{2}(\R^{+}) related to the class of operators Q_\f. In particular we study Schur multipliers given by functions of the form ϕ(max{x,y})\phi(\max\{x,y\}) and we study properties of the averaging projection (Hilbert-Schmidt projection) onto the operators of the form Q_\f.Comment: 87 page

    Decorated Shastry-Sutherland lattice in the spin-1/2 magnet CdCu2(BO3)2

    Get PDF
    We report the microscopic magnetic model for the spin-1/2 Heisenberg system CdCu2(BO3)2, one of the few quantum magnets showing the 1/2-magnetization plateau. Recent neutron diffraction experiments on this compound [M. Hase et al., Phys. Rev. B 80, 104405 (2009)] evidenced long-range magnetic order, inconsistent with the previously suggested phenomenological magnetic model of isolated dimers and spin chains. Based on extensive density-functional theory band structure calculations, exact diagonalizations, quantum Monte Carlo simulations, third-order perturbation theory, as well as high-field magnetization measurements, we find that the magnetic properties of CdCu2(BO3)2 are accounted for by a frustrated quasi-2D magnetic model featuring four inequivalent exchange couplings: the leading antiferromagnetic coupling J_d within the structural Cu2O6 dimers, two interdimer couplings J_t1 and J_t2, forming magnetic tetramers, and a ferromagnetic coupling J_it between the tetramers. Based on comparison to the experimental data, we evaluate the ratios of the leading couplings J_d : J_t1 : J_t2 : J_it = 1 : 0.20 : 0.45 : -0.30, with J_d of about 178 K. The inequivalence of J_t1 and J_t2 largely lifts the frustration and triggers long-range antiferromagnetic ordering. The proposed model accounts correctly for the different magnetic moments localized on structurally inequivalent Cu atoms in the ground-state magnetic configuration. We extensively analyze the magnetic properties of this model, including a detailed description of the magnetically ordered ground state and its evolution in magnetic field with particular emphasis on the 1/2-magnetization plateau. Our results establish remarkable analogies to the Shastry-Sutherland model of SrCu2(BO3)2, and characterize the closely related CdCu2(BO3)2 as a material realization for the spin-1/2 decorated anisotropic Shastry-Sutherland lattice.Comment: 16 pages, 13 figures, 2 tables. Published version with additional QMC dat
    corecore