158 research outputs found

    Gauge fixing in higher derivative field theories

    Full text link
    Higher Derivative (HD) Field Theories can be transformed into second order equivalent theories with a direct particle interpretation. In a simple model involving abelian gauge symmetries we examine the fate of the possible gauge fixings throughout this process. This example is a useful test bed for HD theories of gravity and provides a nice intuitive interpretation of the "third ghost" occurring there and in HD gauge theories when a HD gauge fixing is adopted.Comment: 16 pages, Latex,( Preprint imaff 93/10

    Common Challenges Faced By Rural Principals: A Review of the Literature

    Get PDF
    Within this article, we thematically present common challenges associated with the role of the rural principal. In this literature review, we delimit our search to work published from 2003–2013. A limitation of this study is that it represents data predominantly from American, Canadian, and Australian rural settings, restricting a global applicability of results. Findings highlight that many rural principal candidates face a hiring disadvantage if they do not have a historical connection with the community advertising a position. Additional challenges include juggling diverse responsibilities, lack of professional development and resources, gender discrimination, and issues surrounding school accountability and change. This information is beneficial for researchers, policymaker, senior educational leaders, principals, vice-principals, teachers, parents, and community members interested in school leadership within rural communities. We conclude that to be successful, rural principals must be able to nimbly mediate relations within the local community and the larger school system

    Four-Dimensional Higher-Derivative Supergravity and Spontaneous Supersymmetry Breaking

    Get PDF
    We construct two classes of higher-derivative supergravity theories generalizing Einstein supergravity. We explore their dynamical content as well as their vacuum structure. The first class is found to be equivalent to Einstein supergravity coupled to a single chiral superfield. It has a unique stable vacuum solution except in a special case, when it becomes identical to a simple no-scale theory. The second class is found to be equivalent to Einstein supergravity coupled to two chiral superfields and has a richer vacuum structure. It is demonstrated that theories of the second class can possess a stable vacuum with vanishing cosmological constant that spontaneously breaks supersymmetry. We present an explicit example of this phenomenon and compare the result with the Polonyi model.Comment: 26 pages, LaTeX2e and AMS-LaTeX 1.2, 1 eps figur

    The Universality of Einstein Equations

    Get PDF
    It is shown that for a wide class of analytic Lagrangians which depend only on the scalar curvature of a metric and a connection, the application of the so--called ``Palatini formalism'', i.e., treating the metric and the connection as independent variables, leads to ``universal'' equations. If the dimension nn of space--time is greater than two these universal equations are Einstein equations for a generic Lagrangian and are suitably replaced by other universal equations at bifurcation points. We show that bifurcations take place in particular for conformally invariant Lagrangians L=Rn/2gL=R^{n/2} \sqrt g and prove that their solutions are conformally equivalent to solutions of Einstein equations. For 2--dimensional space--time we find instead that the universal equation is always the equation of constant scalar curvature; the connection in this case is a Weyl connection, containing the Levi--Civita connection of the metric and an additional vectorfield ensuing from conformal invariance. As an example, we investigate in detail some polynomial Lagrangians and discuss their bifurcations.Comment: 15 pages, LaTeX, (Extended Version), TO-JLL-P1/9

    Non-Trivial Vacua in Higher-Derivative Gravitation

    Get PDF
    A discussion of an extended class of higher-derivative classical theories of gravity is presented. A procedure is given for exhibiting the new propagating degrees of freedom, at the full non-linear level, by transforming the higher-derivative action to a canonical second-order form. For general fourth-order theories, described by actions which are general functions of the scalar curvature, the Ricci tensor and the full Riemann tensor, it is shown that the higher-derivative theories may have multiple stable vacua. The vacua are shown to be, in general, non-trivial, corresponding to deSitter or anti-deSitter solutions of the original theory. It is also shown that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. The analysis is extended to actions which are arbitrary functions of terms of the form 2kR\nabla^{2k}R, and it is shown that such theories also have a non-trivial vacuum structure.Comment: 25 pages, LaTeX2e with AMS-LaTeX 1.2, 7 eps figure

    Charged Black Holes In Quadratic Theories

    Full text link
    We point out that in general the Reissner-Nordstr\"om (RN) charged black holes of general relativity are not solutions of the four dimensional quadratic gravitational theories. They are, e.g., exact solutions of the R+R2R+R^2 quadratic theory but not of a theory where a RabRabR_{ab}R^{ab} term is present in the gravitational Lagrangian. In the case where such a non linear curvature term is present with sufficiently small coupling, we obtain an approximate solution for a charged black hole of charge QQ and mass MM. For QMQ\ll M the validity of this solution extends down to the horizon. This allows us to explore the thermodynamic properties of the quadratic charged black hole and we find that, to our approximation, its thermodynamics is identical to that of a RN black hole. However our black hole's entropy is not equal to the one fourth of the horizon area. Finally we extend our analysis to the rotating charged black hole and qualitatively similar results are obtained.Comment: 11 pages, LaTeX/RevTeX3.

    Generalized Gravity and a Ghost

    Full text link
    We show that generalized gravity theories involving the curvature invariants of the Ricci tensor and the Riemann tensor as well as the Ricci scalar are equivalent to multi- scalar-tensor gravities with four derivatives terms. By expanding the action around a vacuum spacetime, the action is reduced to that of the Einstein gravity with four derivative terms, and consequently there appears a massive spin-2 ghost in such generalized gravity theories in addition to a massive spin-0 field.Comment: 8 pages, a reference adde

    Energy in Generic Higher Curvature Gravity Theories

    Get PDF
    We define and compute the energy of higher curvature gravity theories in arbitrary dimensions. Generically, these theories admit constant curvature vacua (even in the absence of an explicit cosmological constant), and asymptotically constant curvature solutions with non-trivial energy properties. For concreteness, we study quadratic curvature models in detail. Among them, the one whose action is the square of the traceless Ricci tensor always has zero energy, unlike conformal (Weyl) gravity. We also study the string-inspired Einstein-Gauss-Bonnet model and show that both its flat and Anti-de-Sitter vacua are stable.Comment: 18 pages, typos corrected, one footnote added, to appear in Phys. Rev.

    A new duality transformation for fourth-order gravity

    Get PDF
    We prove that for non-linear L = L(R), the Lagrangians L and \hat L give conformally equivalent fourth-order field equations being dual to each other. The proof represents a new application of the fact that the operator is conformally invariant.Comment: 11 pages, LaTeX, no figures. Gen. Relat. Grav. in prin

    Gravitation, electromagnetism and cosmological constant in purely affine gravity

    Full text link
    The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field, that has the form of the Maxwell Lagrangian with the metric tensor replaced by the symmetrized Ricci tensor, is dynamically equivalent to the metric Einstein-Maxwell Lagrangian, except the zero-field limit, for which the metric tensor is not well-defined. This feature indicates that, for the Ferraris-Kijowski model to be physical, there must exist a background field that depends on the Ricci tensor. The simplest possibility, supported by recent astronomical observations, is the cosmological constant, generated in the purely affine formulation of gravity by the Eddington Lagrangian. In this paper we combine the electromagnetic field and the cosmological constant in the purely affine formulation. We show that the sum of the two affine (Eddington and Ferraris-Kijowski) Lagrangians is dynamically inequivalent to the sum of the analogous (Λ\LambdaCDM and Einstein-Maxwell) Lagrangians in the metric-affine/metric formulation. We also show that such a construction is valid, like the affine Einstein-Born-Infeld formulation, only for weak electromagnetic fields, on the order of the magnetic field in outer space of the Solar System. Therefore the purely affine formulation that combines gravity, electromagnetism and cosmological constant cannot be a simple sum of affine terms corresponding separately to these fields. A quite complicated form of the affine equivalent of the metric Einstein-Maxwell-Λ\Lambda Lagrangian suggests that Nature can be described by a simpler affine Lagrangian, leading to modifications of the Einstein-Maxwell-Λ\LambdaCDM theory for electromagnetic fields that contribute to the spacetime curvature on the same order as the cosmological constant.Comment: 17 pages, extended and combined with gr-qc/0612193; published versio
    corecore