505 research outputs found

    Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries

    Get PDF
    Management of burn injury is an onerous clinical task since it requires continuous monitoring and extensive usage of specialized facilities. Despite rapid improvizations and investments in burn management, >30% of victims hospitalized each year face severe morbidity and mortality. Excessive loss of body fluids, accumulation of exudate, and the development of septic shock are reported to be the main reasons for morbidity in burn victims. To assist burn wound management, a novel polyurethane (PU)-based bio-nanofibrous dressing loaded with honey (HN) and Carica papaya (PA) fruit extract was fabricated using a one-step electrospinning technique. The developed dressing material had a mean fiber diameter of 190±19.93 nm with pore sizes of 4-50 µm to support effective infiltration of nutrients and gas exchange. The successful blending of HN- and PA-based active biomolecules in PU was inferred through changes in surface chemistry. The blend subsequently increased the wettability (14%) and surface energy (24%) of the novel dressing. Ultimately, the presence of hydrophilic biomolecules and high porosity enhanced the water absorption ability of the PU-HN-PA nanofiber samples to 761.67% from 285.13% in PU. Furthermore, the ability of the bio-nanofibrous dressing to support specific protein adsorption (45%), delay thrombus formation, and reduce hemolysis demonstrated its nontoxic and compatible nature with the host tissues. In summary, the excellent physicochemical and hemocompatible properties of the developed PU-HN-PA dressing exhibit its potential in reducing the clinical complications associated with the treatment of burn injuries

    In vivo pretreatment of Eudrilus eugeniae powder attenuates β-adrenoceptor toxicity mediated by isoproterenol in rat model

    Get PDF
    Abstract The present study was designed to discover the potential cardioprotective function of earthworm powder (EWP) extracted from Eudrilus eugeniae on isoproterenol (ISO)-induced myocardial infarction in male Wistar rats. The rats were divided into four groups, with six rats in each group. Certain rats were pretreated with EWP (200 mg/kg bwt) (Group III), and a myocardial infarction was then induced by subcutaneous injection of ISO (85 mg/kg bwt) (Group II). Oral pretreatment of 200 mg/kg bwt of EWP for 28 days significantly (p > 0.05) improved the blood profile levels, including (a) the lipid profile of total cholesterol (TC), free fatty acids (FFA), and triglycerides (TG); (b) low-density lipoprotein (LDL), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL), and protein; and (c) A/G ratio, glucose and uric acid levels. The electrophoretic pattern of elevated lactose dehydrogenase (LDH) levels was recovered by EWP treatment as evidenced by comparison with ISO-induced rats with cardiac damage. The above results indicate that EWP (200 mg/kg bwt) provides a cardioprotective effect by attenuating the blood profile, lipid profile, biochemical levels, and LDH patterns in rats that experienced an ISO-induced myocardial infarction

    Sorptivity of self-compacting concrete containing fly ash and silica fume

    Get PDF
    This paper presents the surface water absorption of self-compacting concrete (SCC) containing fly ash and silica fume using sorptivity test. Ordinary Portland cement was partially replaced by various combinations of fly ash and silica fume. Test results show that the presence of fly ash and silica fume significantly reduce the surface water absorption of self-compacting concrete at a water-binder ratio of 0.38. When only fly ash is used to partially replace Ordinary Portland cement, a more noticeable reduction in sorptivity is found when the fly ash content is greater than 20%

    Detection of avian metapneumovirus field infection via reverse transcriptase polymerase chain reaction (RT-PCR) and ELISA in two layer farms in Johore

    Get PDF
    Avian metapneumovirus (AMPV) infection which is known as 'swollen head syndrome' has been shown to be prevalent in poultry farms in Malaysia. Two layer farms in Johor denoted as Farm A and Farm B, with previous history of AMPV disease outbreak, were the subjects used for the AMPV field investigation in this study. Thirty chicks from respective treatment groups were monitored at day old, two, four and six weeks of age for AMPV antibody and antigen detection. RT-PCR and ELISA serology indicate that at 2 weeks of age. AMPV field infection had occured in Farm A. In Farm B, AMPV field infection or lateral spread of vaccine was observed as early as 2 weeks. AMPV seroconversion was generally observed at four weeks of age and AMPV subtypes A and B were detected via RT-PCR from both farms in this study. This is the first report of AMPV subtypes A and B by RT-PCR detection in Malaysia

    Gallic acid induced apoptotic events in HCT-15 colon cancer cells

    Get PDF
    AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2',7'-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells

    Thermal properties of a solid through q-deformed algebra

    Get PDF
    We address the study of the thermodynamics of a crystalline solid by applying q-deformed algebras. We based part of our study by considering both Einstein and Debye models. We have mainly explored the q-deformed thermal and electric conductivities as a function of the Debye specific heat. The results led to the interpretation of the q-deformation acting as a factor of disorder or impurity modifying the characteristics of a crystalline structure as, for example, in the case of semiconductors.Comment: 8 pages, twocolumn, 12 figures, Latex, version to appear in Physica

    Effect of Honey and Eugenol on Ehrlich Ascites and Solid Carcinoma

    Get PDF
    Ehrlich ascites carcinoma is a spontaneous murine mammary adenocarcinoma adapted to ascites form and carried in outbred mice by serial intraperitoneal (i/p) passages. The previous work from our laboratory showed that honey having higher phenolic content was potent in inhibiting colon cancer cell proliferation. In this work, we extended our research to screen the antitumor activity of two selected honey samples and eugenol (one of the phenolic constituents of honey) against murine Ehrlich ascites and solid carcinoma models. Honey containing higher phenolic content was found to significantly inhibit the growth of Ehrlich ascites carcinoma as compared to other samples. When honey containing higher phenolic content was given at 25% (volume/volume) intraperitoneally (i/p), the maximum tumor growth inhibition was found to be 39.98%. However, honey was found to be less potent in inhibiting the growth of Ehrlich solid carcinoma. On the other hand, eugenol at a dose of 100 mg/kg i/p was able to inhibit the growth of Ehrlich ascites by 28.88%. In case of solid carcinoma, eugenol (100 mg/kg; i/p) showed 24.35% tumor growth inhibition. This work will promote the development of honey and eugenol as promising candidates in cancer chemoprevention

    Manufacturing and characterization of novel electrospun composite comprising polyurethane and mustard oil scaffold with enhanced blood compatibility

    Get PDF
    The objective of this work is to characterize and investigate the blood compatibility of polyurethane (PU)/mustard oil composites fabricated using electrospinning technique. The fabricated scaffold was characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and contact angle measurements. The activated partial thromboplastin time (APPT), prothrombin time (PT) and the hemolytic assay were done to investigate the blood compatibility of the developed composites. The SEM results revealed that the fiber diameter of the composites (761±123 nm) was reduced compared to pristine PU control. The interaction between PU and mustard oil was confirmed by FTIR as evident through the shifting of peaks. The fabricated composites depicted hydrophobic behavior as insinuated by the increase in contact angle measurements. PU/mustard composites displayed improved crystallinity as confirmed by TGA. Atomic force micrographs suggested that developed PU/mustard oil composites showed an increase in the surface roughness (Ra) compared to pure PU. The Ra of pure PU was observed to be 723 nm but for the fabricated PU/mustard oil composite the Ra was found to be 1298 nm (Ra). The hemolytic index value for pure PU and fabricated composites was observed to be 2.73%and 1.15% indicating that developed composites showed a non-hemolytic behavior signifying the safety of the composites with red blood cells. Hence the newly developed composites with improved physicochemical and blood compatibility properties may be considered as a potential candidate for fabricating cardiac patches and grafts

    Variations in structure and saccharification efficiency of biomass of different sorghum varieties subjected to aqueous ammonia and glycerol pretreatments

    Get PDF
    Sorghum biomass is a potential feedstock for lignocellulosic bioethanol production. The selection of suitable sorghum variety is essential to obtain high ethanol yield. In this paper we screened sorghum varieties belonging to sweet sorghum, post rainy sorghum, and hybrid sorghum. These varieties were screened based on their agronomic traits, amenability to pretreatment methods, and enzymatic digestibility. The sorghum biomass was pretreated using glycerol (60 %) at 190 ̊C for 60 min and aqueous ammonia (15 %) at 120 ̊C for 60 min. The digestibility of the pretreated biomass was determined using commercial cellulase (Cellic CTec2) at 10U/g loading, and the structural changes in the pretreated biomass were analyzed by spectroscopy and scanning electron microscopy. Sweet sorghum varieties showed significant variations in phenotypic traits such as fresh stalk yield, dry fodder yield, and juice yield. The cellulose digestibility among the sorghum varieties after the pretreatment also differed significantly. The cellulose digestibility levels of glycerol range from 64 % to 89 % and ammonia pretreated sorghum from 63 % to 81 %. The total sugar yields varied from 227 mg/g to 356 mg/g and 209 mg/g to 313 mg/g for sorghum pretreated with ammonia and glycerol, respectively. Although the delignification of sorghum varieties was higher (31%–65%) after ammonia pretreatment than glycerol pretreatment, the cellulose digestibility was higher for the glycerol pretreated biomass. These results indicated that effect of delignification on cellulose digestibility is trivial. This study explores factors affecting pretreatment and cellulose digestibility of sorghum varieties for maximum sugar yield in the cellulosic ethanol process

    An insight into the putative role of victuals like honey and its polyphenols in breast cancer

    Get PDF
    Diet plays a crucial role in cancer advancement as well as prevention. Breast cancer is the second leading cause of cancer death among women. Recent research links breast cancer with diet and some evidence for the preventive effect of diet against breast cancer was also documented. The growth of cancer cells is influenced by natural sweetener honey and its multitude of phenolic phytochemical components. Honey has been used medicinally by ancient Greeks and Egyptians and also traditionally exploited in Ayurveda and Chinese medicine. In this paper, the anti-cancer properties of honey and its phytochemical's action against breast cancer have been summarized. They result in apoptosis by enhancing reactive oxygen species level, activating mitochondrial pathway, initiation of pro-apoptotic and anti-apoptotic proteins, induction of p53 pathway that finally cause DNA fragmentation. However, there is a necessity for more proteomic and genetic-based experiments to understand its molecular mechanism to promote honey and its phenolic markers as plausible candidates for breast cancer treatment. Further, there is a need for quality check of honey available in the market, which warrants significant investigation by researchers in the food industry to ensure their attributes
    corecore