32,795 research outputs found

    Fission-Fragment Mass Distribution and Particle Evaporation at low Energies

    Get PDF
    Fusion-fission dynamics is investigated with a special emphasis on fusion reactions at low energy for which shell effects and pairing correlations can play a crucial role leading in particular to multi-modal fission. To follow the dynamical evolution of an excited and rotating nucleus we solve a 2-dimensional Langevin equation taking explicitly light-particle evaporation into account. The confrontation theory-experiment is demonstrated to give interesting information on the model presented, its qualities as well as its shortcomings.Comment: 19 pages, latex, 24 eps-figure

    Accelerator Constraints on Neutralino Dark Matter

    Get PDF
    The constraints on neutralino dark matter \chi obtained from accelerator searches at LEP, the Fermilab Tevatron and elsewhere are reviewed, with particular emphasis on results from LEP 1.5. These imply within the context of the minimal supersymmetric extension of the Standard Model that m_\chi \ge 21.4 GeV if universality is assumed, and yield for large tan\beta a significantly stronger bound than is obtained indirectly from Tevatron limits on the gluino mass. We update this analysis with preliminary results from the first LEP 2W run, and also preview the prospects for future sparticle searches at the LHC.Comment: Presented by J. Ellis at the Workshop on the Identification of Dark Matter, Sheffield, September, 1996. 14 pages; Latex; 12 Fig

    New insights in the photochemistry of grain mantles: The identification of the 4.62 and 6.87 micron bands

    Get PDF
    The mid-IR spectral region of molecular clouds is known to show the fingerprints of molecules frozen in the icy mantles of the interstellar grains. To study the complex chemical and physical interactions on the ice mantles accreted on grains in molecular clouds numerous UV irradiation and diffusion experiments were performed. The irradiation of binary ices was studied. Using isotopic labelling on NH3/CO and NH3/O2 ices numerous compounds were identified, of which OCN(-), NO2(-), NO3(-), and NH4(+) ions reveal a new type of chemical reactions. It appeared that these compounds were formed by proton transfer reactions induced by the interaction between an acid (HNCO, HNO2, HNO3) and a base (NH3) through a hydrogen bond. This mechanism was confirmed by a study of photolyzed diluted argon mixtures. The main astrophysically relevant data from the overall study are presented. The 4.62 micron band in W33A can be reproduced with NH3/CO containing irradiated ices and was identified with OCN(-). The 6.87 micron band in W33A and other photostellar objects is reproduced with NH3/O2 containing ices and is identified with NH4(+)
    corecore