2,403 research outputs found

    New perspectives on the Popigai impact structure

    Get PDF
    The record of large-scale cratering on Earth is scant, and the only currently 'proven' 100-km-class impact structure known to have formed within the Cenozoic is Popigai, located in the Siberian Arctic at 71.5 deg N, 111 deg E. Popigai is clearly a multiringed impact basin formed within the crystalline shield rocks (Anabar) and platform sediments of the Siberian taiga, and estimates of the volume of preserved impact melt typically exceed 1700 cu km, which is within a factor of 2-3 of what would be predicted using scaling relationships. We present the preliminary results of an analysis of the present-day topography of the Popigai structure, together with refined absolute age estimates, in order to reconstruct the pre-erosional morphology of the basin, as well as to quantify the erosion or sediment infill rates in the Popigai region

    K/T age for the popigai impact event

    Get PDF
    The multi-ringed POPIGAI structure, with an outer ring diameter of over 100 km, is the largest impact feature currently recognized on Earth with an Phanerozoic age. The target rocks in this relatively unglaciated region consist of upper Proterozoic through Mesozoic platform sediments and igneous rocks overlying Precambrian crystalline basement. The reported absolute age of the Popigai impact event ranges from 30.5 to 39 Ma. With the intent of refining this age estimate, a melt-breccia (suevite) sample from the inner regions of the Popigai structure was prepared for total fusion and step-wise heating Ar-40/Ar-39 analysis. Although the total fusion and step-heating experiments suggest some degree of age heterogeneity, the recurring theme is an age of around 64 to 66 Ma

    Geological remote sensing signatures of terrestrial impact craters

    Get PDF
    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures. In addition, refinement of initial dimensions of extremely recent structures such as Zhamanshin and Bosumtwi is an important objective in order to permit re-evaluation of global Earth system responses associated with these types of events

    Periodic cometary showers: Real or imaginary?

    Get PDF
    Since the initial reports in 1980, a considerable body of chemical and physical evidence has been accumulated to indicate that a major impact event occurred on earth 65 million years ago. The effects of this event were global in extent and have been suggested as the cause of the sudden demise or mass extinction of a large percentage of life, including the dinosaurs, at the end of the geologic time period known as the Cretaceous. Recent statistical analyses of extinctions in the marine faunal record for the last 250 million years have suggested that mass extinctions may occur with a periodicity of every 26 to 30 million years. Following these results, other workers have attempted to demonstrate that these extinction events, like that at the end of the Cretaceous, are temporally correlated with large impact events. A recent scenario suggests that they are the result of periodic showers of comets produced by either the passage of the solar system through the galactic plane or by perturbations of the cometary cloud in the outer solar system by a, as yet unseen, solar companion. This hypothesized solar companion has been given the name Nemesis

    Velocity gained and altitude lost in recoveries from inclined flight paths

    Get PDF
    A series of charts is given showing the variation of the velocity gained and the altitude lost in dive pullouts with the initial indicated air speed and the dive angle. The effects of the maximum load factor, the drag parameter K, the initial altitude, and the type of recovery on the velocity gained and the altitude lost are also considered. The results were obtained from a step-by-step solution of the equations of motion in which mean values of the air density and the airplane drag coefficient were used. The load-factor variation with time is arbitrarily specified in various ways to simulate pull-out procedures, some of which might be encountered in flight

    Excellent diagnostic characteristics for ultrafast gene profiling of DEFA1-IL1B-LTF in detection of prosthetic joint infections

    Get PDF
    The timely and exact diagnosis of prosthetic joint infection (PJI) is crucial for surgical decision-making. Intraoperatively, delivery of the result within an hour is required. Alpha-defensin lateral immunoassay of joint fluid (JF) is precise for the intraoperative exclusion of PJI; however, for patients with a limited amount of JF and/or in cases where the JF is bloody, this test is unhelpful. Important information is hidden in periprosthetic tissues that may much better reflect the current status of implant pathology. We therefore investigated the utility of the gene expression patterns of 12 candidate genes (TLR1, -2, -4, -6, and 10, DEFA1, LTF, IL1B, BPI, CRP, IFNG, and DEFB4A) previously associated with infection for detection of PJI in periprosthetic tissues of patients with total joint arthroplasty (TJA) (n = 76) reoperated for PJI (n = 38) or aseptic failure (n = 38), using the ultrafast quantitative reverse transcription-PCR (RT-PCR) Xxpress system (BJS Biotechnologies Ltd.). Advanced data-mining algorithms were applied for data analysis. For PJI, we detected elevated mRNA expression levels of DEFA1 (P < 0.0001), IL1B (P < 0.0001), LTF (P < 0.0001), TLR1 (P = 0.02), and BPI (P = 0.01) in comparison to those in tissues from aseptic cases. A feature selection algorithm revealed that the DEFA1-IL1B-LTF pattern was the most appropriate for detection/exclusion of PJI, achieving 94.5% sensitivity and 95.7% specificity, with likelihood ratios (LRs) for positive and negative results of 16.3 and 0.06, respectively. Taken together, the results show that DEFA1-IL1B-LTF gene expression detection by use of ultrafast qRT-PCR linked to an electronic calculator allows detection of patients with a high probability of PJI within 45 min after sampling. Further testing on a larger cohort of patients is needed.Web of Science5592697268

    Immunohistochemical Demonstration of IgG in Reed-Sternberg and Other Cells in Hodgkin\u27s Disease

    Get PDF
    Increased synthesis of IgG in vitro has been demonstrated in spleens from patients with Hodgkin\u27s disease, either with or without invasion of the organ by tumor (1). Interest in this laboratory has centered recently on cytochemical localization of immunoglobulins by means of an immunoglobulin-peroxidase bridge procedure (2) and a satisfactory method has been developed for selectively visualizing immunocytes with this technique. 1 As a means of assessing the basis for increased IgG biosynthesis in spleens of Hodgkin patients, this immunostaining procedure has been applied to localization of IgG-producing cells in specimens with Hodgkin\u27s disease

    Joint Segmentation and Uncertainty Visualization of Retinal Layers in Optical Coherence Tomography Images using Bayesian Deep Learning

    Full text link
    Optical coherence tomography (OCT) is commonly used to analyze retinal layers for assessment of ocular diseases. In this paper, we propose a method for retinal layer segmentation and quantification of uncertainty based on Bayesian deep learning. Our method not only performs end-to-end segmentation of retinal layers, but also gives the pixel wise uncertainty measure of the segmentation output. The generated uncertainty map can be used to identify erroneously segmented image regions which is useful in downstream analysis. We have validated our method on a dataset of 1487 images obtained from 15 subjects (OCT volumes) and compared it against the state-of-the-art segmentation algorithms that does not take uncertainty into account. The proposed uncertainty based segmentation method results in comparable or improved performance, and most importantly is more robust against noise

    In Vitro Culture of Cells Exfoliated in the Urine by Patients with Diabetes Mellitus

    Get PDF
    As an approach to facilitate the understanding of the progression of diabetic renal disease, we assessed the urine of diabetic patients and normal volunteers for the presence of cells that could be cultured in vitro. The results suggest that both normal control subjects and diabetic patients, without clinically detectable microangiopathy, exfoliate few culturable cells into the urine. In contrast, diabetics with documented retinopathy but without nephropathy exfoliate substantially higher numbers of culturable cells (5.2 cells/100 ml urine), whereas diabetics with both retinopathy and advanced nephropathy exfoliate even greater numbers of culturable cells (50.8 cells/100 ml urine). The cells that are exfoliated and culturable can be divided into five distinct cell types based on morphology at the light microscope level. The exfoliated cells proliferate at clonal density after isolation from urine and are epithelial in appearance. These data suggest that the culture of cells from urine might have diagnostic value as an early indicator of diabetic renal disease and provide a convenient, noninvasive new source of human kidney epithelial cells
    corecore