4,284 research outputs found
Application of a helicopter mathematical model to the Langley differential maneuvering simulator for use in a helicopter/fighter evasive maneuver study
A real time simulation study was conducted using a differential maneuvering simulator to determine and evaluate helicopter evasive maneuvers when attacked by fighter aircraft. A general helicopter mathematical model was modified to represent an H-53 helicopter. The helicopter model was compared to H-53 flight test data to determine any differences between the simulated and actual vehicles. The simulated helicopter was also subjectively validated by participating pilots. Two fighter mathematical models validated in previous studies were utilized for the attacking aircraft. The results of this simulation study have been verified in a flight test program conducted by the U. S. Air Force and were found to closely match the flight results
Probing the electron EDM with cold molecules
We present progress towards a new measurement of the electron electric dipole
moment using a cold supersonic beam of YbF molecules. Data are currently being
taken with a sensitivity of . We
therefore expect to make an improvement over the Tl experiment of Commins'
group, which currently gives the most precise result. We discuss the systematic
and statistical errors and comment on the future prospect of making a
measurement at the level of .Comment: 8 pages, 6 figures, proceedings of ICAP 200
The surprising recovery of currency usage
Currency usage began a long trend decline in the decades after World War II. This was expected to continue, and even accelerate, owing to payment technology innovations. Surprisingly, however, such usage as a percentage of GDP stopped falling and has increased quite sharply in recent years in most countries, with Sweden the major outlier. We examine to what extent this may have been due to increasing interest elasticity, nearing the zero lower bound, and also to rising tax evasion, as indirect taxes rise. We also show how currency holdings increased temporarily as the financial crisis struck in 2008
Coherent State Approach to Quantum Clocks
The ``problem of time'' has been a pressing issue in quantum gravity for some
time. To help understand this problem, Rovelli proposed a model of a two
harmonic oscillators system where one of the oscillators can be thought of as a
``clock'' for the other oscillator thus giving a natural time reference frame
for the system. Recently, the author has constructed an explicit form for the
coherent states on the reduced phase space of this system in terms of Klauder's
projection operator approach. In this paper, by using coherent state
representations and other tools from coherent state quantization, I investigate
the construction of gauge invariant operators on this reduced phase space, and
the ability to use a quantum oscillator as a ``clock.''Comment: 13 pages, Late
RNA interference screening demystified
Genetic screens, where the effects of modifying gene function on cell behaviour are assessed in a systematic fashion, have for some time provided useful information to those interested in disease pathogenesis and treatment. Genetic screens exploiting the phenomenon of RNA interference (RNAi) are now becoming commonplace. This article explains the different RNAi screen formats and describes some of the applications of RNAi screening that may be pertinent to the research pathologist
Noether Currents of Charged Spherical Black Holes
We calculate the Noether currents and charges for Einstein-Maxwell theory
using a version of the Wald approach. In spherical symmetry, the choice of time
can be taken as the Kodama vector. For the static case, the resulting combined
Einstein-Maxwell charge is just the mass of the black hole. Using either a
classically defined entropy or the Iyer-Wald selection rules, the entropy is
found to be just a quarter of the area of the trapping horizon. We propose
identifying the combined Noether charge as an energy associated with the Kodama
time. For the extremal black hole case, we discuss the problem of Wald's
rescaling of the surface gravity to define the entropy.Comment: 4 page
Upper Limits On Periodic, Pulsed Radio Emission from the X-Ray Point Source in Cassiopeia A
The Chandra X-ray Observatory recently discovered an X-ray point source near
the center of Cassiopeia A, the youngest known Galactic supernova remnant. We
have conducted a sensitive search for radio pulsations from this source with
the Very Large Array, taking advantage of the high angular resolution of the
array to resolve out the emission from the remnant itself. No convincing
signatures of a dispersed, periodic source or of isolated dispersed pulses were
found, whether for an isolated or a binary source. We derive upper limits of 30
and 1.3 mJy at 327 and 1435 MHz for the phase-averaged pulsed flux density from
this source. The corresponding luminosity limits are lower than those for any
pulsar with age less than 10^4 years. The sensitivities of our search to single
pulses were 25 and 1.0 Jy at 327 and 1435 MHz. For comparison, the Crab pulsar
emits roughly 80 pulses per minute with flux densities greater than 100 Jy at
327 MHz and 8 pulses per minute with flux densities greater than 50 Jy at 1435
MHz. These limits are consistent with the suggestion that the X-ray point
source in Cas A adds to the growing number of neutron stars which are not radio
pulsars.Comment: accepted by ApJ Letter
Toward a simulation approach for alkene ring-closing metathesis : scope and limitations of a model for RCM
A published model for revealing solvent effects on the ring-closing metathesis (RCM) reaction of di-Et diallylmalonate 7 has been evaluated over a wider range of conditions, to assess its suitability for new applications. Unfortunately, the model is too flexible and the published rate consts. do not agree with exptl. studies in the literature. However, by fixing the values of important rate consts. and restricting the concn. ranges studied, useful conclusions can be drawn about the relative rates of RCM of different substrates, precatalyst concn. can be simulated accurately and the effect of precatalyst loading can be anticipated. Progress has also been made toward applying the model to precatalyst evaluation, but further modifications to the model are necessary to achieve much broader aims
Pulsed beams as field probes for precision measurement
We describe a technique for mapping the spatial variation of static electric,
static magnetic, and rf magnetic fields using a pulsed atomic or molecular
beam. The method is demonstrated using a beam designed to measure the electric
dipole moment of the electron. We present maps of the interaction region,
showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm
with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with
25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm
resolution. This new diagnostic technique is very powerful in the context of
high-precision atomic and molecular physics experiments, where pulsed beams
have not hitherto found widespread application.Comment: 6 pages, 12 figures. Figures heavily compressed to comply with
arxiv's antediluvian file-size polic
- …