2,268 research outputs found

    Strongly Coupled Semi-Direct Mediation of Supersymmetry Breaking

    Full text link
    Strongly coupled semi-direct gauge mediation models of supersymmetry breaking through massive mediators with standard model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard model gaugino masses for a small mediator mass without breaking the standard model symmetries.Comment: 7 pages; v2: the model generalized, gaugino mass corrected; v3: explanations expanded, references adde

    Dynamical Supersymmetry Breaking without Messenger Gauge Interactions

    Get PDF
    We investigate low-energy models of supersymmetry (SUSY) breaking by means of vector-like gauge theories for dynamical SUSY breaking. It is not necessary to introduce messenger gauge interactions utilized so far to mediate the SUSY breaking to the standard-model sector, which reduces complication in the model building. We also consider various other ways of SUSY-breaking transmission.Comment: 10 pages, LaTeX, 1 Postscript figur

    Anisotropy of in-plane magnetization due to nodal gap structure in the vortex state

    Full text link
    We examine the interplay between anisotropy of the in-plane magnetization and the nodal gap structure on the basis of the approximate analytic solution in the quasiclassical formalism. We show that a four-fold oscillation appears in the magnetization, and its amplitude changes sign at an intermediate field. The high-field oscillation originates from the anisotropy of the upper critical field, while the low-field behavior can be understood by the thermally activated quasiparticles near nodes depending on the applied field angles. The temperature dependence of the magnetization also shows a similar sign change. The anisotropy of the magnetization offers a possible measurement to identify the gap structure directly for a wide class of type II superconductors.Comment: 4 pages, 4 figure

    Unconventional superconductors under rotating magnetic field II: thermal transport

    Full text link
    We present a microscopic approach to the calculations of thermal conductivity in unconventional superconductors for a wide range of temperatures and magnetic fields. Our work employs the non-equilibrium Keldysh formulation of the quasiclassical theory. We solve the transport equations using a variation of the Brandt-Pesch-Tewordt (BPT) method, that accounts for the quasiparticle scattering on vortices. We focus on the dependence of the thermal conductivity on the direction of the field with the respect to the nodes of the order parameter, and discuss it in the context of experiments aiming to determine the shape of the gap from such anisotropy measurements. We consider quasi-two dimensional Fermi surfaces with vertical line nodes and use our analysis to establish the location of gap nodes in heavy fermion CeCoIn5_5 and organic superconductor κ\kappa-(BEDT-TTF)2_2Cu(NCS)2_2.Comment: 17 pages, 13 figure

    Interplane and intraplane heat transport in quasi two-dimensional nodal superconductors

    Get PDF
    We analyze the behavior of the thermal conductivity in quasi-two dimensional superconductors with line nodes. Motivated by measurements of the anisotropy between the interplane and intraplane thermal transport in CeIrIn_5 we show that a simple model of the open Fermi surface with vertical line nodes is insufficient to describe the data. We propose two possible extensions of the model taking into account a) additional modulation of the gap along the axial direction of the open Fermi surface; and b) dependence of the interplane tunneling on the direction of the in-plane momentum. We discuss the temperature dependence of the thermal conductivity anisotropy and its low T limit in these two models and compare the results with a model with a horizontal line of nodes (``hybrid gap''). We discuss possible relevance of each model for the symmetry of the order parameter in CeIrIn_5, and suggest further experiments aimed at clarifying the shape of the superconducting gap.Comment: 14pages, 12 figure

    Field-angle resolved specific heat and thermal conductivity in the vortex phase of UPd_2Al_3

    Full text link
    The field-angle dependent specific heat and thermal conductivity in the vortex phase of UPd_2Al_3 is studied using the Doppler shift approximation for the low energy quasiparticle excitations. We first give a concise presentation of the calculation procedure of magnetothermal properties with vortex and FS averages performed numerically. The comparison of calculated field-angle oscillations and the experimental results obtained previously leads to a strong reduction of the possible SC candidate states in UPd_2Al_3. The possible SC gap functions have node lines in hexagonal symmetry planes containing either the zone center or the AF zone boundary along c. Node lines in non-symmetry planes can be excluded. We also calculate the field and temperature dependence of field-angular oscillation amplitudes. We show that the observed nonmonotonic field dependence and sign reversal of the oscillation amplitude is due to small deviations from unitary scattering.Comment: 16 pages, 8 figure

    Spectral properties and geology of bright and dark material on dwarf planet Ceres

    Full text link
    Variations and spatial distributions of bright and dark material on dwarf planet Ceres play a key role in understanding the processes that have led to its present surface composition. We define limits for bright and dark material in order to distinguish them consistently, based on the reflectance of the average surface using Dawn Framing Camera data. A systematic classification of four types of bright material is presented based on their spectral properties, composition, spatial distribution, and association with specific geomorphological features. We found obvious correlations of reflectance with spectral shape (slopes) and age; however, this is not unique throughout the bright spots. Although impact features show generally more extreme reflectance variations, several areas can only be understood in terms of inhomogeneous distribution of composition as inferred from Dawn Visible and Infrared Spectrometer data. Additional material with anomalous composition and spectral properties are rare. The identification of the composition and origin of the dark, particularly the darkest material, remains to be explored. The spectral properties and the morphology of the dark sites suggest an endogenic origin, but it is not clear whether they are more or less primitive surficial exposures or excavated subsurface but localized material. The reflectance, spectral properties, inferred composition, and geologic context collectively suggest that the bright and dark material tends to gradually change toward the average surface over time. This could be because of multiple processes, i.e., impact gardening/space weathering, and lateral mixing, including thermal and aqueous alteration, accompanied by changes in composition and physical properties such as grain size, surface temperature, and porosity (compaction).Comment: Meteoritics and Planetary Science; Dawn at Ceres special issu

    Algebroid Yang-Mills Theories

    Full text link
    A framework for constructing new kinds of gauge theories is suggested. Essentially it consists in replacing Lie algebras by Lie or Courant algebroids. Besides presenting novel topological theories defined in arbitrary spacetime dimensions, we show that equipping Lie algebroids E with a fiber metric having sufficiently many E-Killing vectors leads to an astonishingly mild deformation of ordinary Yang-Mills theories: Additional fields turn out to carry no propagating modes. Instead they serve as moduli parameters gluing together in part different Yang-Mills theories. This leads to a symmetry enhancement at critical points of these fields, as is also typical for String effective field theories.Comment: 4 pages; v3: Minor rewording of v1, version to appear in Phys. Rev. Let
    • …
    corecore