19 research outputs found

    Transcription errors induce proteotoxic stress and shorten cellular lifespan

    Get PDF
    Transcription errors occur in all living cells; however, it is unknown how these errors affect cellular health. To answer this question, we monitored yeast cells that were genetically engineered to display error-prone transcription. We discovered that these cells suffer from a profound loss in proteostasis, which sensitizes them to the expression of genes that are associated with protein-folding diseases in humans; thus, transcription errors represent a new molecular mechanism by which cells can acquire disease. We further found that the error rate of transcription increases as cells age, suggesting that transcription errors affect proteostasis particularly in aging cells. Accordingly, transcription errors accelerate the aggregation of a peptide that is implicated in Alzheimer’s disease, and shorten the lifespan of cells. These experiments reveal a novel, basic biological process that directly affects cellular health and aging

    Increased Expression of Claudin-1 and Claudin-7 in Liver Cirrhosis and Hepatocellular Carcinoma.

    No full text
    Claudins have been reported to be differentially regulated in malignancies and implicated in the process of carcinogenesis and tumor progression. Claudin-1 has been described as key factor in the entry of hepatitis C virus (HCV) into hepatocytes and as promoter of epithelial-mesenchymal transition in liver cells. The objective of the current study was to characterize claudin expression in hepatocellular carcinoma (HCC) as well as HCC-surrounding and normal liver samples with respect to cirrhosis and HCV infection. Expression of claudin-1, -2, -3, -4, and -7 was measured by morphometric analysis of immunohistochemistry, and Western blotting in 30 HCCs with 30 corresponding non-tumorous tissues and 6 normal livers. Claudin-1 and -7 protein expression was found significantly elevated in cirrhosis when compared with non-cirrhotic liver. HCCs developed in cirrhotic livers showed even higher expression of claudin-1 contrary to decreased claudin-7 expression when compared with cirrhosis. With reference to HCV status, HCCs or surrounding livers of HCV-infected samples did not show significant alterations in claudin expression when compared with HCV-negative specimens. Cirrhotic transformation associates with elevated claudin-1 and -7 expressions in both non-tumorous liver and HCC. The fact that no significant differences in claudin expression were found regarding HCV-positivity in our sample set suggests that HCV infection alone does not induce a major increase in the total amount of its entry co-factor claudin-1. Increased expression of claudin-1 seems to be a consequence of cirrhotic transformation and might contribute to a more effective HCV entry and malignant transformation

    Mutations in TJP2 cause progressive cholestatic liver disease

    No full text
    The elucidation of genetic causes of cholestasis has proved to be important in understanding the physiology and pathophysiology of the liver. Protein-truncating mutations in the tight junction protein 2 gene (TJP2) are shown to cause failure of protein localisation, with disruption of tight-junction structure leading to severe cholestatic liver disease. This contrasts with the embryonic-lethal knockout mouse, highlighting differences in redundancy in junctional complexes between organs and species
    corecore