76 research outputs found

    Interpopulation Variation in Contour Feather Structure Is Environmentally Determined in Great Tits

    Get PDF
    Background: The plumage of birds is important for flying, insulation and social communication. Contour feathers cover most of the avian body and among other functions they provide a critical insulation layer against heat loss. Feather structure and composition are known to vary among individuals, which in turn determines variation in the insulation properties of the feather. However, the extent and the proximate mechanisms underlying this variation remain unexplored. Methodology/Principal Findings: We analyzed contour feather structure from two different great tit populations adapted to different winter regimes, one northern population in Oulu (Finland) and one southern population in Lund (Sweden). Great tits from the two populations differed significantly in feather structure. Birds from the northern population had a denser plumage but consisting of shorter feathers with a smaller proportion containing plumulaceous barbs, compared with conspecifics from the southern population. However, differences disappeared when birds originating from the two populations were raised and moulted in identical conditions in a common-garden experiment located in Oulu, under ad libitum nutritional conditions. All birds raised in the aviaries, including adult foster parents moulting in the same captive conditions, developed a similar feather structure. These feathers were different from that of wild birds in Oulu but similar to wild birds in Lund, the latter moulting in more benign conditions than those of Oulu. Conclusions/Significance: Wild populations exposed to different conditions develop contour feather differences either due to plastic responses or constraints. Environmental conditions, such as nutrient availability during feather growth play a crucial role in determining such differences in plumage structure among populations

    Metabolic characteristics and body composition in house finches: effects of seasonal acclimatization

    Full text link
    House finches ( Carpodacus mexicanus ) from the introduced population in the eastern United States were examined to assess metabolic characteristics and aspects of body composition associated with seasonal acclimatization. Wild birds were captured during winter (January and February) and late spring (May and June) in southeastern Michigan. Standard metabolic rates did not differ seasonally, but cold-induced “peak” metabolic rate was 28% greater in winter than late spring. The capacity to maintain elevated metabolic rates during cold exposure (“thermogenic endurance”) increased significantly from an average of 26.1 to 101.3 min in late spring and winter, respectively. House finches captured in the late afternoon during winter had twice as much stored fat as those during late spring. Both the wet mass and lean dry mass of the pectoralis muscle, a primary shivering effector, were significantly greater during winter. The seasonal changes in peak metabolism and thermogenic endurance demonstrate the existence and magnitude of metabolic seasonal acclimatization in eastern house finches. Increased quantities of stored fat during winter appear to play a role in acclimatization, yet other physiological adjustments such as lipid mobilization and catabolism are also likely to be involved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47132/1/360_2004_Article_BF00367313.pd

    Intraspecific Correlations of Basal and Maximal Metabolic Rates in Birds and the Aerobic Capacity Model for the Evolution of Endothermy

    Get PDF
    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, Msum (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; Msum and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and Msum only) and examined correlations among these variables. We also measured BMR and Msum in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either Msum or MMR in juncos. Moreover, no significant correlation between Msum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and Msum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and Msum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic links between minimal and maximal metabolic output

    Transient beta-glucoronidase expression in Scots pine tissues derived from mature trees

    No full text

    Kasvatusalustalle lisättyjen polyamiinien vaikutus männyn kallussolukoihin.

    No full text

    Bilberry in vitro protocols and analyses of phenolic compounds

    No full text

    Vanhojden puiden solukot geeninsiirron kohteena männyllä

    No full text
    • …
    corecore