1,354 research outputs found
From Young and Hot to Old and Cold: Comparing White Dwarf Cooling Theory to Main Sequence Stellar Evolution in Open Clusters
I explore the current ability of both white dwarf cooling theory and main
sequence stellar evolution theory to accurately determine stellar population
ages by comparing ages derived using both techniques for open clusters ranging
from 0.1 to 4 Gyr. I find good agreement between white dwarf and main sequence
evolutionary ages over the entire age range currently available for study. I
also find that directly comparing main sequence turn-off ages to white dwarf
ages is only weakly sensitive to realistic levels of errors in cluster
distance, metallicity, and reddening. Additional detailed comparisons between
white dwarf and main sequence ages have tremendous potential to refine and
calibrate both of these important clocks, and I present new simulations of
promising open cluster targets. The most demanding requirement for these white
dwarf studies are very deep (V > 25-28) cluster observations made necessary by
the faintness of the oldest white dwarfs.Comment: 25 pages, incl. 10 figures, ApJ accepted for April, 200
WIYN Open Cluster Study XI: WIYN 3.5m Deep Photometry of M35 (NGC 2168)
We present deep BVI observations of the core of M35 and a nearby comparison
field obtained at the WIYN 3.5m telescope under excellent seeing. These
observations display the lower main sequence in BV and VI CMDs down to V = 23.3
and 24.6, respectively. At these faint magnitudes background field stars are
far more numerous than the cluster stars, yet by using a smoothing technique
and CMD density distribution subtraction we recover the cluster fiducial main
sequence and luminosity function to V = 24.6. We find the location of the main
sequence in these CMDs to be consistent with earlier work on other open
clusters, specifically NGC 188, NGC 2420, and NGC 2477. We compare these open
cluster fiducial sequences to stellar models by Baraffe et al. (1998), Siess et
al. (2000), Girardi et al. (2000), and Yi et al. (2001) and find that the
models are too blue in both B-V and V-I for stars below ~0.4 Mo. M35 contains
stars to the limit of the extracted main sequence, at M ~ 0.10-0.15 Mo,
suggesting that M35 may harbor a large number of brown dwarfs, which should be
easy targets for near-IR instrumentation on 8-10m telescopes. We also identify
a new candidate white dwarf in M35 at V = 21.36 +- 0.01. Depending on which WD
models are used to interpret this cluster candidate, it is either a very high
mass WD (1.05 +- 0.05 Mo) somewhat older (0.19-0.26 Gyr, 3-4 sigma) than our
best isochrone age (150 Myr), or it is a modestly massive WD (0.67-0.78 Mo)
much too old (0.42-0.83 Gyr) to belong to the cluster.Comment: 28 pages + 24 figures; to be published in the Sept, 2002 A
Calibration of White Dwarf cooling sequences: theoretical uncertainty
White Dwarf luminosities are powerful age indicators, whose calibration
should be based on reliable models. We discuss the uncertainty of some chemical
and physical parameters and their influence on the age estimated by means of
white dwarf cooling sequences. Models at the beginning of the white dwarf
sequence have been obtained on the base of progenitor evolutionary tracks
computed starting from the zero age horizontal branch and for a typical halo
chemical composition (Z=0.0001, Y=0.23). The uncertainties due to nuclear
reaction rates, convection, mass loss and initial chemical composition are
discussed. Then, various cooling sequences for a typical white dwarf mass
(M=0.6 Mo) have been calculated under different assumptions on some input
physics, namely: conductive opacity, contribution of the ion-electron
interaction to the free energy and microscopic diffusion. Finally we present
the evolution of white dwarfs having mass ranging between 0.5 and 0.9 Mo. Much
effort has been spent to extend the equation of state down to the low
temperature and high density regime. An analysis of the latest improvement in
the physics of white dwarf interiors is presented. We conclude that at the
faint end of the cooling sequence (log L/Lo=-5.5) the present overall
uncertainty on the age is of the order of 20%, which correspond to about 3 Gyr.
We suggest that this uncertainty could be substantially reduced by improving
our knowledge of the conductive opacity (especially in the partially degenerate
regime) and by fixing the internal stratification of C and O.Comment: 14 figures, accepted by Ap
Contribution of White Dwarfs to Cluster Masses
I present a literature search through 31 July 1997 of white dwarfs (WDs) in
open and globular clusters. There are 36 single WDs and 5 WDs in binaries known
among 13 open clusters, and 340 single WDs and 11 WDs in binaries known among
11 globular clusters. From these data I have calculated WD mass fractions for
four open clusters (the Pleiades, NGC 2168, NGC 3532, and the Hyades) and one
globular cluster (NGC 6121). I develop a simple model of cluster evolution that
incorporates stellar evolution but not dynamical evolution to interpret the WD
mass fractions. I augment the results of my simple model with N-body
simulations incorporating stellar evolution (Terlevich 1987; de la Feunte
Marcos 1996; Vesperini & Heggie 1997). I find that even though these clusters
undergo moderate to strong kinematical evolution the WD mass fraction is
relatively insensitive to kinematical evolution. By comparing the cluster mass
functions to that of the Galactic disk, and incorporating plausibility
arguments for the mass function of the Galactic halo, I estimate the WD mass
fraction in these two populations. I assume the Galactic disk is ~10 Gyrs old
(Winget et al. 1987; Liebert, Dahn, & Monet 1988; Oswalt et al. 1996) and that
the Galactic halo is ~12 Gyrs old (Reid 1997b; Gratton et al. 1997; Chaboyer et
al. 1998), although the WD mass fraction is insensitive to age in this range. I
find that the Galactic halo should contain 8 to 9% (alpha = -2.35) or perhaps
as much as 15 to 17% (alpha = -2.0) of its stellar mass in the form of WDs. The
Galactic disk WD mass fraction should be 6 to 7% (alpha = -2.35), consistent
with the empirical estimates of 3 to 7% (Liebert, Dahn, & Monet 1988; Oswalt et
al. 1996). (abridged)Comment: 20 pages, uuencoded gunzip'ed latex + 3 postscrip figures, to be
published in AJ, April, 199
Deep Photometry of the Globular Cluster M5: Distance Estimates from White Dwarf and Main Sequence Stars
We present deep VI photometry of stars in the globular cluster M5 (NGC 5904)
based on images taken with the Hubble Space Telescope. The resulting
color-magnitude diagram reaches below V ~ 27 mag, revealing the upper 2-3
magnitudes of the white dwarf cooling sequence, and main sequence stars eight
magnitudes and more below the turn-off. We fit the main sequence to subdwarfs
of known parallax to obtain a true distance modulus of (m-M)_0 = 14.45 +/- 0.11
mag. A second distance estimate based on fitting the cluster white dwarf
sequence to field white dwarfs with known parallax yielded (m-M)_0 = 14.67 +/-
0.18 mag. We couple our distance estimates with extensive photometry of the
cluster's RR Lyrae variables to provide a calibration of the RR Lyrae absolute
magnitude yielding M_V(RR) = 0.42 +/- 0.10 mag at [Fe/H] = -1.11 dex. We
provide another luminosity calibration in the form of reddening-free Wasenheit
functions. Comparison of our calibrations with predictions based on recent
models combining stellar evolution and pulsation theories shows encouraging
agreement. (Abridged)Comment: AASTeX, 29 pages including 5 figures. Complete photometry data and
FITS-format images are available at
http://physics.bgsu.edu/~layden/ASTRO/PUBL/published.html . Accepted for
publication in the Astrophysical Journal, 2005 October 20. Replaced errant
wording in last sentence of paragraph 4 of conclusion
Is the tetraneutron a bound dineutron-dineutron molecule?
In light of a new experiment which claims a positive identification, we
discuss the possible existence of the tetraneutron. We explore a novel model
based on a dineutron-dineutron molecule. We show that this model is not able to
explain the tetraneutron as a bound state, in agreement with other theoretical
models already discussed in the literature.Comment: 9 pages, 3 figures, J. Phys. G, in pres
Classes of fast and specific search mechanisms for proteins on DNA
Problems of search and recognition appear over different scales in biological
systems. In this review we focus on the challenges posed by interactions
between proteins, in particular transcription factors, and DNA and possible
mechanisms which allow for a fast and selective target location. Initially we
argue that DNA-binding proteins can be classified, broadly, into three distinct
classes which we illustrate using experimental data. Each class calls for a
different search process and we discuss the possible application of different
search mechanisms proposed over the years to each class. The main thrust of
this review is a new mechanism which is based on barrier discrimination. We
introduce the model and analyze in detail its consequences. It is shown that
this mechanism applies to all classes of transcription factors and can lead to
a fast and specific search. Moreover, it is shown that the mechanism has
interesting transient features which allow for stability at the target despite
rapid binding and unbinding of the transcription factor from the target.Comment: 65 pages, 23 figure
Intermediate mass stars: updated models
A new set of stellar models in the mass range 1.2 to 9 is
presented. The adopted chemical compositions cover the typical galactic values,
namely and . A comparison among
the most recent compilations of similar stellar models is also discussed. The
main conclusion is that the differencies among the various evolutionary results
are still rather large. For example, we found that the H-burning evolutionary
time may differ up to 20 %. An even larger disagreement is found for the
He-burning phase (up to 40-50 %). Since the connection between the various
input physics and the numerical algorithms could amplify or counterbalance the
effect of a single ingredient on the resulting stellar model, the origin of
this discrepancies is not evident. However most of these discrepancies, which
are clearly found in the evolutionary tracks, are reduced on the isochrones. By
means of our updated models we show that the ages inferred by the theory of
stellar evolution is in excellent agreement with those obtained by using other
independent methods applied to the nearby Open Clusters. Finally, the
theoretical initial/final mass relation is revised.Comment: 35 pages, 24 figures, 4 tables, accepted for publication in the
Astrophisycal Journa
Traintracks Through Calabi-Yaus: Amplitudes Beyond Elliptic Polylogarithms
We describe a family of finite, four-dimensional, -loop Feynman integrals
that involve weight- hyperlogarithms integrated over -dimensional
elliptically fibered varieties we conjecture to be Calabi-Yau. At three loops,
we identify the relevant K3 explicitly; and we provide strong evidence that the
four-loop integral involves a Calabi-Yau threefold. These integrals are
necessary for the representation of amplitudes in many theories---from massless
theory to integrable theories including maximally supersymmetric
Yang-Mills theory in the planar limit---a fact we demonstrate.Comment: 4+2 pages, 4 figures; references adde
- âŠ