246 research outputs found

    Continuum limit of lattice quasielectron wavefunctions

    Get PDF
    Trial states describing anyonic quasiholes in the Laughlin state were found early on, and it is therefore natural to expect that one should also be able to create anyonic quasielectrons. Nevertheless, the existing trial wavefunctions for quasielectrons show behaviors that are not compatible with the expected topological properties or their construction involves ad hoc elements. It was shown, however, that for lattice fractional quantum Hall systems, it is possible to find a relatively simple quasielectron wavefunction that has all the expected properties (2018 New J. Phys. 20 033029). This naturally poses the question: what happens to this wavefunction in the continuum limit? Here we demonstrate that, although one obtains a finite continuum wavefunction when the quasielectron is on top of a lattice site, such a limit of the lattice quasielectron does not exist in general. In particular, if the quasielectron is put anywhere else than on a lattice site, the lattice wavefunction diverges when the continuum limit is approached. The divergence can be removed by projecting the state on the lowest Landau level, but we find that the projected state does also not have the properties expected for anyonic quasielectrons. We hence conclude that the lattice quasielectron wavefunction does not solve the difficulty of finding trial states for anyonic quasielectrons in the continuum

    Dynamic Properties of Poverty Targeting

    Get PDF
    A body of recent studies has compared the ability of proxy-means testing (PMT), a data-driven poverty targeting procedure, and community-based targeting (CBT), a participatory method,to identify consumption-poor households. Motivated by the facts that targeted benefits typically reach beneficiaries with a substantial time lag and that transitions into and out of poverty are frequent, we are first to assess PMT’s and CBT’s performance one and two years subsequent to the targeting exercise. With data from Burkina Faso, we replicate the finding that PMT targets more accurately than CBT with respect to poverty at baseline, by 14 percent. We find that this pattern is reversed for households’ poverty status twelve months later, while both methods perform identically with respect to poverty data collected 30 months after the baseline. We investigate how communities process different kinds of information and identify three properties of CBT that make it forward-looking: implicit weights put on PMT variables that predict future rather than current consumption, accounting for additional household characteristics not included in typical PMTs and processing of additional information unobserved by the researcher

    Magnetic coupling in highly-ordered NiO/Fe3O4(110): Ultrasharp magnetic interfaces vs. long-range magnetoelastic interactions

    Full text link
    We present a laterally resolved X-ray magnetic dichroism study of the magnetic proximity effect in a highly ordered oxide system, i.e. NiO films on Fe3O4(110). We found that the magnetic interface shows an ultrasharp electronic, magnetic and structural transition from the ferrimagnet to the antiferromagnet. The monolayer which forms the interface reconstructs to NiFe2O4 and exhibits an enhanced Fe and Ni orbital moment, possibly caused by bonding anisotropy or electronic interaction between Fe and Ni cations. The absence of spin-flop coupling for this crystallographic orientation can be explained by a structurally uncompensated interface and additional magnetoelastic effects

    Strengthening the impact of the Inter-American Human Rights System through scholarly research: reflective report

    Get PDF
    This Report contains the collective findings of the Inter-American Human Rights Network, a multi-disciplinary group of international scholars of the Inter-American Human Rights System (IAHRS) brought together to gain richer insights into three sets of issues with particular salience for the IAHRS: compliance and impact; the politics and practice of institutional and legal change; and cross-regional perspectives on human rights systems

    Magnetic versus crystal field linear dichroism in NiO thin films

    Full text link
    We have detected strong dichroism in the Ni L2,3L_{2,3} x-ray absorption spectra of monolayer NiO films. The dichroic signal appears to be very similar to the magnetic linear dichroism observed for thicker antiferromagnetic NiO films. A detailed experimental and theoretical analysis reveals, however, that the dichroism is caused by crystal field effects in the monolayer films, which is a non trivial effect because the high spin Ni 3d83d^{8} ground state is not split by low symmetry crystal fields. We present a practical experimental method for identifying the independent magnetic and crystal field contributions to the linear dichroic signal in spectra of NiO films with arbitrary thicknesses and lattice strains. Our findings are also directly relevant for high spin 3d53d^{5} and 3d33d^{3} systems such as LaFeO3_{3}, Fe2_{2}O3_{3}, VO, LaCrO3_{3}, Cr2_{2}O3_{3}, and Mn4+^{4+} manganate thin films

    25.1 High Efficiency Monolithic Perovskite Silicon Tandem Solar Cell with a High Bandgap Perovskite Absorber

    Get PDF
    Monolithic perovskite silicon tandem solar cells can overcome the theoretical efficiency limit of silicon solar cells. This requires an optimum bandgap, high quantum efficiency, and high stability of the perovskite. Herein, a silicon heterojunction bottom cell is combined with a perovskite top cell, with an optimum bandgap of 1.68 amp; 8201;eV in planar p i n tandem configuration. A methylammonium free FA0.75Cs0.25Pb I0.8Br0.2 3 perovskite with high Cs content is investigated for improved stability. A 10 molarity increase to 1.1 amp; 8201;m of the perovskite precursor solution results in amp; 8776;75 amp; 8201;nm thicker absorber layers and 0.7 amp; 8201;mA amp; 8201;cm amp; 8722;2 higher short circuit current density. With the optimized absorber, tandem devices reach a high fill factor of 80 and up to 25.1 certified efficiency. The unencapsulated tandem device shows an efficiency improvement of 2.3 absolute over 5 amp; 8201;months, showing the robustness of the absorber against degradation. Moreover, a photoluminescence quantum yield analysis reveals that with adapted charge transport materials and surface passivation, along with improved antireflection measures, the high bandgap perovskite absorber has the potential for 30 tandem efficiency in the near futur

    Li14Ln5[Si11N19O5]O2F2 with Ln = Ce, Nd-Representatives of a Family of Potential Lithium Ion Conductors

    Get PDF
    The isotypic layered oxonitridosilicates Li14Ln5[Si11N19O5]O2F2 (Ln = Ce, Nd) have been synthesized using Li as fluxing agent and crystallize in the orthorhombic space group Pmmn (Z = 2, Li14Ce5[Si11N19O5]O2F2: a = 17.178(3), b = 7.6500(15), c = 10.116(2) Å, R1 = 0.0409, wR2 = 0.0896; Li14Nd5 Si11N19O5]O2F2: a = 17.126(2), b = 7.6155 15), c = 10.123(2) Å, R1 = 0.0419, wR2 = 0.0929). The silicate layers consist of dreier and sechser rings interconnected via common corners, yielding an unprecedented silicate substructure. A topostructural analysis indicates possible 1D ion migration pathways between five crystallographic independent Li positions. The specific Li-ionic conductivity and its temperature dependence were determined by impedance spectroscopy as well as DC polarization/depolarization measurements. The ionic conductivity is on the order of 5 × 10−5 S/cm at 300°C, while the activation energy is 0.69 eV. Further adjustments of the defect chemistry (e.g., through doping)can make these compounds interesting candidates for novel oxonitridosilicate based ion conductors

    E. coli metabolic protein aldehydealcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed

    Get PDF
    It is becoming increasingly evident that a high degree of regulation is involved in the protein synthesis machinery entailing more interacting regulatory factors. A multitude of proteins have been identified recently which show regulatory function upon binding to the ribosome. Here, we identify tight association of a metabolic protein aldehyde-alcohol dehydrogenase E (AdhE) with the E. coli 70S ribosome isolated from cell extract under low salt wash conditions. Cryo-EM reconstruction of the ribosome sample allows us to localize its position on the head of the small subunit, near the mRNA entrance. Our study demonstrates substantial RNA unwinding activity of AdhE which can account for the ability of ribosome to translate through downstream of at least certain mRNA helices. Thus far, in E. coli, no ribosome-associated factor has been identified that shows downstream mRNA helicase activity. Additionally, the cryo-EM map reveals interaction of another extracellular protein, outer membrane protein C (OmpC), with the ribosome at the peripheral solvent side of the 50S subunit. Our result also provides important insight into plausible functional role of OmpC upon ribosome binding. Visualization of the ribosome purified directly from the cell lysate unveils for the first time interactions of additional regulatory proteins with the ribosom
    • …
    corecore