840 research outputs found
Intervention In The Foreign Exchange Markets: How Effective Is It?
Intervention in the foreign-exchange markets by the central banks of the major industrial nations has been the norm for a little over 40 years. The level of intervention exercised by these central banks during these 40 years has ranged from very heavy to very light. At one extreme was the Bretton Woods period which was characterized by extensive, cooperative intervention among central banks to maintain fixed exchange rates between currencies. At the other extreme were periods like the early to mid-1970\u27s and the early to mid-1980\u27s which were characterized by the use of only occasional intervention. The most recent round of extensive interventions took place from 1985 through early 1988. These recent interventions represented a concerted effort by the United States, Great Britain, West Germany, France, and Japan (the G-5) to force the U.S. dollar down more rapidly than the foreign-exchange market was driving it down. Subsequently, the dollar\u27s fall required further interventions by the G-5 to maintain the dollar in a certain target zone. The entire effort by the G-5 was initiated to aid the United States in correcting its massive trade deficit. This effort was unsuccessful in reaching its goal. While the United States\u27 trade deficit with the other countries of the G-5 and the countries of the European Economic Community did improve, the U.S. trade deficit with many of the countries whose currencies were tied to the U.S. dollar did not improve. The United States continued to run a massive trade deficit. Despite this huge trade deficit, the dollar began to rise again on the foreign-exchange markets in the spring of 1989. A currency, such as the U.S. dollar, which rises in value when the country is experiencing a huge trade deficit is not following the 11 rules 11 of the basic monetary systems. Possible reasons for the dollar\u27s ability to break the 11 rules 11 include that the U.S. dollar is a reserve currency for the rest of the world and that the United States is a profitable and safe place to invest. The existence of these reasons and the unlikelihood that they will be removed indicate that intervention on behalf of the U.S. dollar will not be very effective. vi
Investigating laser induced phase engineering in MoS2 transistors
Phase engineering of MoS2 transistors has recently been demonstrated and has
led to record low contact resistances. The phase patterning of MoS2 flakes with
laser radiation has also been realized via spectroscopic methods, which invites
the potential of controlling the metallic and semiconducting phases of MoS2
transistors by simple light exposure. Nevertheless, the fabrication and
demonstration of laser patterned MoS2 devices starting from the metallic
polymorph has not been demonstrated yet. Here, we study the effects of laser
radiation on 1T/1T'-MoS2 transistors with the prospect of driving an in-situ
phase transition to the 2H-polymorph through light exposure. We find that
although the Raman peaks of 2H-MoS2 become more prominent and the ones from the
1T/1T' phase fade after the laser exposure, the semiconducting properties of
the laser patterned devices are not fully restored and the laser treatment
ultimately leads to degradation of the transport channel
Thickness dependent interlayer transport in vertical MoS2 Josephson junctions
We report on observations of thickness dependent Josephson coupling and
multiple Andreev reflections (MAR) in vertically stacked molybdenum disulfide
(MoS2) - molybdenum rhenium (MoRe) Josephson junctions. MoRe, a chemically
inert superconductor, allows for oxide free fabrication of high transparency
vertical MoS2 devices. Single and bilayer MoS2 junctions display relatively
large critical currents (up to 2.5 uA) and the appearance of sub-gap structure
given by MAR. In three and four layer thick devices we observe orders of
magnitude lower critical currents (sub-nA) and reduced quasiparticle gaps due
to proximitized MoS2 layers in contact with MoRe. We anticipate that this
device architecture could be easily extended to other 2D materials.Comment: 18 pages, 6 figures including Supporting Informatio
Specificity between Neotropical tree seedlings and their fungal mutualists leads to plant–soil feedback
A growing body of evidence obtained largely from temperate grassland studies suggests that feedbacks occurring between plants and their associated soil biota are important to plant community assemblage. However, few studies have examined the importance of soil organisms in driving plant–soil feedbacks in forested systems. In a tropical forest in central Panama, we examined whether interactions between tree seedlings and their associated arbuscular mycorrhizal fungi (AMF) lead to plant–soil feedback. Specifically, do tropical seedlings modify their own AMF communities in a manner that either favors or inhibits the next cohort of conspecific seedlings (i.e., positive or negative feedback, respectively)? Seedlings of two shade-tolerant tree species (Eugenia nesiotica, Virola surinamensis) and two pioneer tree species (Luehea seemannii, Apeiba aspera) were grown in pots containing identical AMF communities composed of equal amounts of inoculum of six co-occurring AMF species. The different AMF–host combinations were all exposed to two light levels. Under low light (2% PAR), only two of the six AMF species sporulated, and we found that host identity did not influence composition of AMF spore communities. However, relative abundances of three of the four AMF species that produced spores were influenced by host identity when grown under high light (20% PAR). Furthermore, spores of one of the AMF species, Glomus geosporum, were common in soils of Luehea and Eugenia but absent in soils of Apeiba and Virola. We then conducted a reciprocal experiment to test whether AMF communities previously modified by Luehea and Apeiba differentially affected the growth of conspecific and heterospecific seedlings. Luehea seedling growth did not differ between soils containing AMF communities modified by Luehea and Apeiba. However, Apeiba seedlings were significantly larger when grown with Apeiba-modified AMF communities, as compared to Apeiba seedlings grown with Luehea-modifed AMF communities. Our experiments suggest that interactions between tropical trees and their associated AMF are species-specific and that these interactions may shape both tree and AMF communities through plant–soil feedback
Reverse taxonomy for elucidating diversity of insect-associated nematodes: a case study with termites
BACKGROUND: The molecular operational taxonomic unit(MOTU)has recently been applied to microbial and microscopic animal biodiversity surveys. However, in many cases, some of the MOTUs cannot be definitively tied to any of the taxonomic groups in current databases. To surmount these limitations, the concept of "reverse taxonomy" has been proposed, i.e. to primarily list the MOTUs with morphological information, and then identify and/or describe them at genus/species level using subsamples or by re-isolating the target organisms. Nevertheless, the application of "reverse taxonomy" has not been sufficiently evaluated. Therefore, the practical applicability of "reverse taxonomy" is tested using termite-associated nematodes as a model system for phoretic/parasitic organisms which have high habitat specificity and a potential handle (their termite host species) for re-isolation attempts. METHODOLOGY: Forty-eight species (from 298 colonies) of termites collected from the American tropics and subtropics were examined for their nematode associates using the reverse taxonomy method and culturing attempts (morphological identification and further sequencing efforts). The survey yielded 51 sequence types (= MOTUs) belonging to 19 tentatively identified genera. Within these, four were identified based on molecular data with preliminary morphological observation, and an additional seven were identified or characterized from successful culturing, leaving eight genera unidentified. CONCLUSIONS: That 1/3 of the genera were not successfully identified suggests deficiencies in the depth of available sequences in the database and biological characters, i.e. usually isolated as phoretic/parasitic stages which are not available for morphological identification, and too many undiscovered lineages of nematodes. Although there still is the issue of culturability of nematodes, culturing attempts could help to make reverse taxonomy methods more effective. However, expansion of the database, i.e., production of more DNA barcodes tied to biological information by finding and characterizing additional new and known lineages, is necessary for analyzing functional diversity.Natsumi Kanzaki, Robin M. Giblin-Davis, Rudolf H. Scheffrahn, Hisatomo Taki, Alejandro Esquivel, Kerrie A. Davies and E. Allen Herr
- …